Predicting the Frequency Characteristics of Hybrid Meander Systems Using a Feed-Forward Backpropagation Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model of the Hybrid Meander Systems
2.2. Prediction of HMH Characteristics
2.3. Architecture of the FFBN
2.4. Training of the FFBN
2.5. Analysis of the Primary Results
3. Results
3.1. Experimental Investigation
3.2. Prediction Results Using the FFBN
- Inductivity of the helical turns
- Inductivity of the helical turns
- Inductivity of the helical turns
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ma, T.G.; Wang, C.W.; Lai, C.H.; Tseng, Y.C. Synthesized Transmission Lines: Design, Circuit Implementation, and Phased Array Applications; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2016; pp. 26–60. [Google Scholar]
- Menargues, E.; Chudzik, M.; Arnedo, I. Fast Synthesis of Microwave Devices with Arbitrary Frequency Responses and Smooth Profiles. In Proceedings of the 44th European Microwave Conference, Rome, Italy, 6–9 October 2014; pp. 1083–1086. [Google Scholar]
- Zhang, R.; Luo, S.; Zhu, L. Synthesis and Design of Mixed Lumped and Distributed Low-Pass Filters/Low-Passing Impedance Transformers with Taylor Series. IEEE Trans. Microw. Theory Tech. 2016, 64, 1265–1272. [Google Scholar] [CrossRef]
- Guo, T.; Zhang, Q.; Chen, Y.; Wang, R.; Caloz, C. Single-Step Tunable Group Delay Phaser for Spectrum Sniffing. IEEE Microw. Wirel. Compon. Lett. 2015, 25, 808–810. [Google Scholar] [CrossRef]
- Ratnaparkhi, V.V.; Deshmukh, K.N. Design and performance analysis of microwave amplifier using S-Parameters. In Proceedings of the International Conference on Global Trends in Signal Processing, Information Computing and Communication, Jalgaon, India, 22–24 December 2016; pp. 631–633. [Google Scholar]
- Katkevičius, A.; Štaras, S. Analysis of rejection properties of meander systems. Electron. Electr. Eng. 2011, 108, 19–22. [Google Scholar] [CrossRef]
- Qian, C.; Ding, D.; Bi, J.; Chen, R. Numerical Analysis of Multi-Carrier Microwave Breakdown in Waveguide Components. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 77–79. [Google Scholar] [CrossRef]
- Tamma, V.A.; Figotin, A.; Capolino, F. Concept for Pulse Compression Device Using Structured Spatial Energy Distribution. IEEE Trans. Microw. Theory Tech. 2016, 64, 742–755. [Google Scholar] [CrossRef]
- Zhou, H.W.; Yang, X.X.; Rahim, S. Synthesis of the Sparse Uniform-Amplitude Concentric Ring Transmitting Array for Optimal Microwave Power Transmission. Int. J. Antennas Propag. 2018, 2018, 8075318. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, L.; Wang, H.; Yang, G. Design of Compact Wideband Meandering Loop Antenna with a Monopole Feed for Wireless Applications. Prog. Electromagn. Res. Lett. 2018, 73, 1–8. [Google Scholar] [CrossRef]
- Alon, L.; Lattanzi, R.; Lakshmanan, K.; Brown, R.; Deniz, C.M.; Sodickson, D.K.; Collins, C.M. Transverse slot antennas for high field MRI. Magn. Reson. Med. 2018, 80, 1233–1242. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Montero, R.; Camacho-Gómez, C.; López-Espí, P.L.; Salcedo-Sanz, S. Optimal Design of a Planar Textile Antenna for Industrial Scientific Medical (ISM) 2.4 GHz Wireless Body Area Networks (WBAN) with the CRO-SL Algorithm. Sensors 2018, 18, 1982. [Google Scholar] [CrossRef]
- Guan, C.; Kanaya, H. 360° Phase Shifter Design Using Dual-Branch Switching Network. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 675–677. [Google Scholar] [CrossRef]
- Tobia, A.; Ramaccia, D.; Toscano, A.; Bilotti, F. Design and Experimental Verification of a Compact Gaussian Beam Source for Parallel-Plate Waveguide Tests. IEEE Trans. Antennas Propag. 2018, 66, 4288–4291. [Google Scholar] [CrossRef]
- Gulyaev, Y.V.; Mityagin, A.Y.; Chuchevab, G.V.; Afanas’ev, M.S. Principles of Creation of Microwave Delay Lines Based on Nanoscale Ferroelectric Films. J. Commun. Technol. Electron. 2014, 59, 87–92. [Google Scholar] [CrossRef]
- Pomarnacki, R.; Krukonis, A.; Urbanavičius, V. Acceleration Techniques for Analysis of Microstrip Structures. Electron. Electr. Eng. 2014, 20, 108–111. [Google Scholar] [CrossRef]
- Villeneuve, R.; Cueille, M.; Arnaud-Cormos, D.; David, J.-F.; Leveque, P.; Durand, A.-J. Setup and Characterization of a Backward Wave Oscillator Delay Line Scaled Down to Centimeter and Millimeter-Wave Ranges. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 1053–1061. [Google Scholar] [CrossRef]
- Gavrilovic, M.M.; Webb, J.P. Accuracy control in the optimization of microwave devices by finite-element methods. IEEE Trans. Microw. Theory Tech. 2002, 50, 1901–1911. [Google Scholar] [CrossRef] [Green Version]
- Ghayoula, E.; Ghayoula, R.; Haj-Taieb, M.; Chouinard, J.Y.; Bouallegue, A. Pattern Synthesis Using Hybrid Fourier-Neural Networks for IEEE 802.11 MIMO Application. Prog. Electromagn. Res. B 2016, 67, 45–58. [Google Scholar] [CrossRef]
- Hassan, N.; Yassin, A.; Tayer, M.; Mohamed, M.M. Ultra-wideband Scattered Microwave Signals for Detection of Breast Tumors Using Artificial Neural Networks. In Proceedings of the International Conference on Artificial Intelligence and Pattern Recognition (AIPR2016), Lodz, Poland, 19–21 September 2016; pp. 137–142. [Google Scholar]
- Huang, A.-D.; Zhong, Z.; Wu, W.; Guo, Y.-Z. An Artificial Neural Network-Based Electrothermal Model for GaN HEMTs With Dynamic Trapping Effects Consideration. IEEE Trans. Microw. Theory Tech. 2016, 64, 2519–2527. [Google Scholar] [CrossRef]
- Keerthan, P.; Kumar, R.; Vinoy, K.J. A Novel All-Pass Network Implementation for Improved Group Delay Performance. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 804–806. [Google Scholar] [CrossRef]
- Liu, W.; Na, W.; Zhu, L.; Ma, J.; Zhang, Q.J. Wiener-Type Dynamic Neural Network Approach to the Modeling of Nonlinear Microwave Devices. IEEE Trans. Microw. Theory Tech. 2017, 65, 2043–2062. [Google Scholar] [CrossRef]
- Liu, W.; Na, W.; Zhu, L.; Zhang, Q.J. A Review of Neural Network Based Techniques for Nonlinear Microwave Device. In Proceedings of the IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization, Beijng, China, 27–29 July 2016; pp. 1–2. [Google Scholar]
- Singhal, M.; Saini, G. Optimization of Antenna Parameters Using Artificial Neural Network: A Review. Int. J. Comput. Trends Technol. 2017, 44, 64–73. [Google Scholar] [CrossRef]
- Połap, D.; Woźniak, M.; Wei, W.; Damaševičius, R. Multi-threaded learning control mechanism for neural networks. Future Gener. Comput. Syst. 2018, 87, 16–34. [Google Scholar] [CrossRef]
- Ghorbaninejad, H.; Heydarian, R. New Design of Waveguide Directional Coupler Using Genetic Algorithm. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 86–88. [Google Scholar] [CrossRef]
- Erredir, C.; Riabi, M.L.; Ammari, H.; Bouarroudj, E. Design of Waveguide Structures Using Improved Neural Networks. J. Microw. Optoelectron. Electromagn. Appl. 2017, 16, 900–907. [Google Scholar] [CrossRef] [Green Version]
- Panagiotou, S.C.; Thomopoulos, S.C.A.; Capsalis, C.N. Genetic Algorithms in Antennas and Smart Antennas Design Overview: Two Novel Antenna Systems for Triband GNSS Applications and a Circular Switched Parasitic Array for WiMax Applications Developments with the Use of Genetic Algorithms. Int. J. Antennas Propag. 2014, 2014, 729208. [Google Scholar] [CrossRef]
- Daškevičius, V.; Skudutis, J.; Katkevičius, A.; Štaras, S. Simulation and properties of the wide-band hybrid slow-wave system. Electron. Electr. Engineer. 2010, 104, 43–46. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plonis, D.; Katkevičius, A.; Krukonis, A.; Šlegerytė, V.; Maskeliūnas, R.; Damaševičius, R. Predicting the Frequency Characteristics of Hybrid Meander Systems Using a Feed-Forward Backpropagation Network. Electronics 2019, 8, 85. https://doi.org/10.3390/electronics8010085
Plonis D, Katkevičius A, Krukonis A, Šlegerytė V, Maskeliūnas R, Damaševičius R. Predicting the Frequency Characteristics of Hybrid Meander Systems Using a Feed-Forward Backpropagation Network. Electronics. 2019; 8(1):85. https://doi.org/10.3390/electronics8010085
Chicago/Turabian StylePlonis, Darius, Andrius Katkevičius, Audrius Krukonis, Vaiva Šlegerytė, Rytis Maskeliūnas, and Robertas Damaševičius. 2019. "Predicting the Frequency Characteristics of Hybrid Meander Systems Using a Feed-Forward Backpropagation Network" Electronics 8, no. 1: 85. https://doi.org/10.3390/electronics8010085
APA StylePlonis, D., Katkevičius, A., Krukonis, A., Šlegerytė, V., Maskeliūnas, R., & Damaševičius, R. (2019). Predicting the Frequency Characteristics of Hybrid Meander Systems Using a Feed-Forward Backpropagation Network. Electronics, 8(1), 85. https://doi.org/10.3390/electronics8010085