Design of Voltage Mode Electronically Tunable First Order All Pass Filter in ±0.7 V 16 nm CNFET Technology
Abstract
:1. Introduction
2. Carbon Nano-Tube Field Effect Transistor
3. CNFET Based UGIA
4. AOTAPF Circuit Description
5. Design and Verification
6. Performance Comparison of the Proposed APF
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
APF | All pass filter |
AOTAPF | Active only tuneable all pass filter |
ASP | Analog signal processing |
CNFET | Carbon Nanotube Field Effect Transistor |
GCSs | Graphite-cylindrical-sheets |
SE | Single-ended |
THD | Total-harmonic-distortion |
UGIA | Unity gain inverting amplifier |
VTF | Voltage transfer function |
Pole-frequency | |
Zero-frequency | |
varactor capacitance |
Appendix A
References
- Anju, U.; Kirat, P. First Order All Pass, Low Pass and High Pass Filters Using Differential Voltage Current Conveyors. J. Act. Passive Electron. Devices 2017, 12, 275–284. [Google Scholar]
- Nandi, R.; Koushick, M.; Sandhya, P. Single-CFA first-order allpass filter. IEICE Electron. Express 2016, 13, 1–8. [Google Scholar] [CrossRef]
- Maheshwari, S. Some analog filters of reduced complexity with shelving and multifunctional characteristics. J. Circuits Syst. Comput. 2018, 27, 1850150. [Google Scholar] [CrossRef]
- Kumar, A.; Ajay, K.; Sajal, K. DXCCII-Based First Order Voltage-Mode All-Pass Filter. In Advances in Power Systems and Energy Management; Springer: Singapore, 2018; pp. 709–717. [Google Scholar]
- Channumsin, O.; Worapong, T. Single VDBA-based phase shifter with low output impedance. In Proceedings of the 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Phuket, Thailand, 27–30 June 2017; pp. 427–430. [Google Scholar]
- Iqbal, S.; Psychalinos, C.; Parveen, N. First-order allpass filter using multi-input OTA. Int. J. Electron. 2013, 100, 1373–1382. [Google Scholar] [CrossRef]
- Minaei, S.; Yuce, E. Novel voltage-mode all-pass filter based on using DVCCs. Circuits Syst. Signal Process. 2010, 29, 391–402. [Google Scholar] [CrossRef]
- Herencsar, N.; Koton, J.; Hanak, P. Universal Voltage Conveyor and its Novel Dual-Output Fully-Cascadable VM APF Application. Appl. Sci. 2017, 3, 307. [Google Scholar] [CrossRef]
- Maundy, B.J.; Aronhime, P. A novel CMOS first-order all-pass filter. Int. J. Electron. 2002, 89, 739–743. [Google Scholar] [CrossRef]
- Yuce, E. A novel CMOS-based voltage-mode first-order phase shifter employing a grounded capacitor. Circuits Syst. Signal Process. 2010, 29, 235–245. [Google Scholar] [CrossRef]
- Herencsar, N.; Minaei, S.; Koton, J.; Vrba, K. In Voltage-mode all-pass filter design using simple CMOS transconductor: Non-ideal case study. In Proceedings of the 2015 38th International Conference on Telecommunications and Signal Processing (TSP), Prague, Czech Republic, 9–11 July 2015; pp. 677–681. [Google Scholar]
- Yuce, E.; Minaei, S. A novel phase shifter using two NMOS transistors and passive elements. Analog Integr. Circuits Signal Process. 2010, 62, 77. [Google Scholar] [CrossRef]
- Metin, B.; Cicekoglu, O. Tunable all-pass filter with a single inverting voltage buffer. In Proceedings of the 2008 Ph.D. Research in Microelectronics and Electronics, Istanbul, Turkey, 22 June–25 April 2008; pp. 261–263. [Google Scholar]
- Metin, B.; Herencsar, N.; Cicekoglu, O. A low-voltage electronically tunable MOSFET-C voltage-mode first-order all-pass filter design. Radioengineering 2013, 22, 985–994. [Google Scholar]
- Toker, A.; Özoǧuz, S. Tunable allpass filter for low voltage operation. Electron. Lett. 2003, 39, 175–176. [Google Scholar] [CrossRef]
- Minaei, S.; Yuce, E. High input impedance NMOS-based phase shifter with minimum number of passive elements. Circuits Syst. Signal Process. 2012, 31, 51–60. [Google Scholar] [CrossRef]
- Herencsar, N.; Minaei, S.; Koton, J.; Yuce, E.; Vrba, K. New resistorless and electronically tunable realization of dual-output VM all-pass filter using VDIBA. Analog Integr. Circuits Signal Process. 2013, 74, 141–154. [Google Scholar] [CrossRef]
- Yucel, F.; Yuce, E. A new electronically tunable first-order all-pass filter using only three NMOS transistors and a capacitor. Turk. J. Electr. Eng. Comput. Sci. 2016, 24, 3286–3292. [Google Scholar] [CrossRef]
- Yildiz, H.A.; Ozoguz, S.; Toker, A.; Cicekoglu, O. On the realization of MOS-only allpass filters. Circuits Syst. Signal Process. 2013, 32, 1455–1465. [Google Scholar] [CrossRef]
- Yıldız, H.A.; Toker, A.; Elwakil, A.S.; Ozoguz, S. MOS-only allpass filters with extended operating frequency range. Analog Integr. Circuits Signal Process. 2014, 81, 17–22. [Google Scholar] [CrossRef]
- Metin, B.; Arslan, E.; Herencsar, N.; Cicekoglu, O. Voltage-mode MOS-only all-pass filter. In Proceedings of the 2011 34th International Conference on Telecommunications and Signal Processing (TSP), Budapest, Hungary, 18–20 August 2011; pp. 317–318. [Google Scholar]
- Kuhn, K.J. Considerations for ultimate CMOS scaling. IEEE Trans. Electron Devices 2012, 59, 1813–1828. [Google Scholar] [CrossRef]
- Frank, D.J.; Dennard, R.H.; Nowak, E.; Solomon, P.M.; Taur, Y.; Wong, H.-S.P. Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 2001, 89, 259–288. [Google Scholar] [CrossRef]
- Voinigescu, S.P.; Tomkins, A.; Dacquay, E.; Chevalier, P.; Hasch, J.; Chantre, A.; Sautreuil, B. A study of SiGe HBT signal sources in the 220–330-GHz range. IEEE J. Solid-State Circuits 2013, 48, 2011–2021. [Google Scholar] [CrossRef]
- Schröter, M.; Claus, M.; Hermann, S.; Tittman-Otto, J.; Haferlach, M.; Mothes, S.; Schulz, S. In CNTFET-based RF electronics—State-of-the-art and future prospects. In Proceedings of the 2016 IEEE 16th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), Austin, TX, USA, 24–27 January 2016; pp. 97–100. [Google Scholar]
- Hayat, K.; Cheema, H.; Shamim, A. Potential of carbon nanotube field effect transistors for analogue circuits. J. Eng. 2013, 2013, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Prakash, P.; Sundaram, K.M.; Bennet, M.A. A review on carbon nanotube field effect transistors (CNTFETs) for ultra-low power applications. Renew. Sustain. Energy Rev. 2018, 89, 194–203. [Google Scholar] [CrossRef]
- Nizamuddin, M.; Loan, S.A.; Alamoud, A.R.; Abbassi, S.A. Design, simulation and comparative analysis of CNT based cascode operational transconductance amplifiers. Nanotechnology 2015, 26, 395201. [Google Scholar] [CrossRef] [PubMed]
- Loan, S.A.; Nizamuddin, M.; Alamoud, A.R.; Abbasi, S.A. Design and comparative analysis of high performance carbon nanotube-based operational transconductance amplifiers. NANO 2015, 10, 1550039. [Google Scholar] [CrossRef]
- Masud, M.; A’ain, A.K.B.; Khan, I.A. In Reconfigurable CNTFET based fully differential first order multifunctional filter, Multimedia. In Proceedings of the 2017 International Conference on Signal Processing and Communication Technologies (IMPACT), Aligarh, India, 24–26 November 2017; pp. 55–59. [Google Scholar]
- Tripathi, S.; Ansari, M.S.; Joshi, A.M. In Low-Noise Tunable Band-Pass Filter for ISM 2.4 GHz Bluetooth Transceiver in ±0.7 V 32 nm CNFET Technology. In Proceedings of the International Conference on Data Engineering and Communication Technology, Maharashtra, India, 15–16 December 2017; pp. 435–443. [Google Scholar]
- Sharma, J.; Ansari, M.S.; Sharma, J. In Current-Mode Electronically Tunable Resistor-less Universal Filter in ±0.5 V 32 Nm CNFET, Devices. In Proceedings of the 2014 International Conference on Circuits and Communications (ICDCCom), Ranchi, India, 12–13 September 2014; pp. 1–6. [Google Scholar]
- Masud, M.; A’ain, A.K.B.; Khan, I.A. In CNFET Based Reconfigurable First Order Filter. In Proceedings of the 2017 9th IEEE-GCC Conference and Exhibition (GCCCE), Manama, Bahrain, 8–11 May 2017; pp. 1–9. [Google Scholar]
- Sharma, J.; Ansari, M.S.; Sharma, J. In Electronically Tunable Resistor-less Universal Filter in ±0.5 V 32 nm CNFET. In Proceedings of the 2014 Fifth International Symposium on Electronic System Design (ISED), Surathkal, Mangalore, India, 15–17 December 2014; pp. 206–207. [Google Scholar]
- Moaiyeri, M.H.; Jahaniana, A.; Navia, K. Comparative performance evaluation of large FPGAs with CNFET and CMOS-based switches in nanoscale. Nano-Micro Lett. 2011, 3, 178–188. [Google Scholar] [CrossRef]
- Guo, J.; Lundstrom, M.; Datta, S. Performance projections for ballistic carbon nanotube field-effect transistors. Appl. Phys. Lett. 2002, 80, 3192–3194. [Google Scholar] [CrossRef]
- Natori, K.; Kimura, Y.; Shimizu, T. Characteristics of a carbon nanotube field-effect transistor analyzed as a ballistic nanowire field-effect transistor. J. Appl. Phys. 2005, 97, 034306. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Wong, H.-S.P. A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—Part II: Full device model and circuit performance benchmarking. IEEE Trans. Electron Devices 2007, 54, 3195–3205. [Google Scholar] [CrossRef]
Parameter | Description | Value |
---|---|---|
V | Power-supply | 0.7 V |
Physical-channel-length | 16 nm | |
CNTs-pitch | 10 nm | |
(, ) | CNTs-chirality | (19, 0) |
Lceff | Mean free-path in intrinsic-CNT | 200 nm |
N-type CNFET flatband-voltage | 0 | |
High- | Dielectric material of top-gate | (16) |
Source-side length of doped-CNT | 16 nm | |
Drain-side length of doped-CNT | 16 nm | |
Oxide-thickness | 4 nm | |
Dielectric constant | (4) | |
Leff | Mean free-path in doped-CNT | 15 nm |
Fermi-level of n+ doped drain/source CNT-region | 0.6 eV | |
Total number of CNT used per CNFET | ∼ |
Ref | Ideal Current Source Used | Number of Transistors | Number of External R/C | Technology (nm) | Supply Voltage | Tuning Range (Hz) | Power Dissipation (mW) |
---|---|---|---|---|---|---|---|
[12] | No | 4 | 2/1 | 180 | ±0.9 | 544.8 K to 2.9 M | 20.4 |
[13] | No | 9 | 2/1 | 350 | ±1.5 | 10 K to 56 K | - |
[14] | No | 3 | 2/1 | 90 | ±0.45 | 103 K to 18.3 M | 0.418 |
[15] | Yes | 5 | 0/1 | 350 | ±1.5 | - | - |
[16] | No | 5 | 0/1 | 180 | ±0.9 | 3.48 M to 26.1 M | - |
[17] | Yes | 6 | 0/1 | 180 | ±0.9 | 1.07 M to 9.44 M | 10.5 |
[18] | Yes | 3 | 0/1 | 130 | ±0.75 | - | 20.6 |
[19] | Yes | 4 | 0/0 | 350 | ±1.65 | 105 M to 205 M | - |
[20] | Yes | 8 | 0/0 | 350 | - | - | - |
[21] | Yes | 4 | 0/0 | 350 | ±1.5 | - | - |
Proposed | No | 3 | 0/0 | 16 | ±0.7 | 34.2 G to 56.9 G | 0.0337 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masud, M.; A’ain, A.; Khan, I.; Husin, N. Design of Voltage Mode Electronically Tunable First Order All Pass Filter in ±0.7 V 16 nm CNFET Technology. Electronics 2019, 8, 95. https://doi.org/10.3390/electronics8010095
Masud M, A’ain A, Khan I, Husin N. Design of Voltage Mode Electronically Tunable First Order All Pass Filter in ±0.7 V 16 nm CNFET Technology. Electronics. 2019; 8(1):95. https://doi.org/10.3390/electronics8010095
Chicago/Turabian StyleMasud, Muhammad, Abu A’ain, Iqbal Khan, and Nasir Husin. 2019. "Design of Voltage Mode Electronically Tunable First Order All Pass Filter in ±0.7 V 16 nm CNFET Technology" Electronics 8, no. 1: 95. https://doi.org/10.3390/electronics8010095
APA StyleMasud, M., A’ain, A., Khan, I., & Husin, N. (2019). Design of Voltage Mode Electronically Tunable First Order All Pass Filter in ±0.7 V 16 nm CNFET Technology. Electronics, 8(1), 95. https://doi.org/10.3390/electronics8010095