A Modified Adaptive Neuro-Fuzzy Inference System Using Multi-Verse Optimizer Algorithm for Oil Consumption Forecasting
Abstract
:1. Introduction
- We present a novel time series prediction model, namely MVO-ANFIS. To the best of our knowledge, this is the first study that applies MVO for optimizing ANFIS.
- The proposed model was employed to forecast oil consumption in two countries and achieved a robust prediction result.
- We compared the proposed method with other modified ANFIS models, and the proposed method outperformed them in prediction result and speed.
2. Preliminaries
2.1. Adaptive Neuro-Fuzzy Inference System
2.2. Multi-Verse Optimizer Algorithm
Algorithm 1 Multi-verse Optimizer (MVO) algorithm |
|
3. The Proposed Method
4. Experiment
4.1. Dataset Description
4.2. Performance Measures
4.3. Parameter Settings
4.4. Results and Discussion
4.5. Statistical Analysis
5. Conclusion and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- OPEC. 2017 OPEC World Oil Outlook. 2017. Available online: http://www.opec.org (accessed on 1 May 2018).
- Yu, L.; Zhao, Y.; Tang, L.; Yang, Z. Online big data-driven oil consumption forecasting with Google trends. Int. J. Forecast. 2019, 35, 213–223. [Google Scholar] [CrossRef]
- Azadeh, A.; Khakestani, M.; Saberi, M. A flexible fuzzy regression algorithm for forecasting oil consumption estimation. Energy Policy 2009, 37, 5567–5579. [Google Scholar] [CrossRef]
- Li, J.; Wang, R.; Wang, J.; Li, Y. Analysis and forecasting of the oil consumption in China based on combination models optimized by artificial intelligence algorithms. Energy 2018, 144, 243–264. [Google Scholar] [CrossRef]
- Wang, Y.; Sui, Y.; Wu, J.; Jiao, J. Research on nonlinear model predictive control technology for ship dynamic positioning system. In Proceedings of the 2012 IEEE International Conference on Automation and Logistics, Zhengzhou, China, 15–17 August 2012; pp. 348–351. [Google Scholar]
- Kovari, A. Effect of leakage in electrohydraulic servo systems based on complex nonlinear mathematical model and experimental results. Acta Polytech. Hung. 2015, 12, 129–146. [Google Scholar]
- Adnan, M.N.M.; Chowdury, M.R.; Taz, I.; Ahmed, T.; Rahman, R.M. Content based news recommendation system based on fuzzy logic. In Proceedings of the 2014 International Conference on Informatics, Electronics & Vision (ICIEV), Dhaka, Bangladesh, 23–24 May 2014; pp. 1–6. [Google Scholar]
- Othman, A.A.; Tizhoosh, H.R.; Khalvati, F. EFIS—Evolving fuzzy image segmentation. IEEE Trans. Fuzzy Syst. 2014, 22, 72–82. [Google Scholar] [CrossRef]
- Yurdusev, M.A.; Fırat, M.; Turan, M.E.; Gultekin Sinir, B. Neural networks and fuzzy inference systems for predicting water consumption time series. Stoch. Environ. Res. Risk Assess. 2009, 23, 1225. [Google Scholar] [CrossRef]
- Wu, J.D.; Hsu, C.C.; Chen, H.C. An expert system of price forecasting for used cars using adaptive neuro-fuzzy inference. Expert Syst. Appl. 2009, 36, 7809–7817. [Google Scholar] [CrossRef]
- Mandal, S.; Mahapatra, S.; Patel, R. Neuro fuzzy approach for arsenic (III) and chromium (VI) removal from water. J. Water Process Eng. 2015, 5, 58–75. [Google Scholar] [CrossRef]
- Atsalakis, G.S.; Atsalaki, I.G.; Zopounidis, C. Forecasting the success of a new tourism service by a neuro-fuzzy technique. Eur. J. Oper. Res. 2018, 268, 716–727. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Lu, Y. A novel hybrid methodology for short-term wind power forecasting based on adaptive neuro-fuzzy inference system. Renew. Energy 2017, 103, 620–629. [Google Scholar] [CrossRef]
- Cao, H.; Xin, Y.; Yuan, Q. Prediction of biochar yield from cattle manure pyrolysis via least squares support vector machine intelligent approach. Bioresource Technol. 2016, 202, 158–164. [Google Scholar] [CrossRef] [PubMed]
- El Aziz, M.A.; Hemdan, A.M.; Ewees, A.A.; Elhoseny, M.; Shehab, A.; Hassanien, A.E.; Xiong, S. Prediction of biochar yield using adaptive neuro-fuzzy inference system with particle swarm optimization. In Proceedings of the IEEE PES PowerAfrica, Accra, Ghana, 27–30 June 2017; pp. 115–120. [Google Scholar]
- Sarkheyli, A.; Zain, A.M.; Sharif, S. Robust optimization of ANFIS based on a new modified GA. Neurocomputing 2015, 166, 357–366. [Google Scholar] [CrossRef]
- Al-Qaness, M.A.; Elaziz, M.A.; Ewees, A.A. Oil Consumption Forecasting Using Optimized Adaptive Neuro-Fuzzy Inference System Based on Sine Cosine Algorithm. IEEE Access 2018, 6, 68394–68402. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evolut. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput. Appl. 2016, 27, 495–513. [Google Scholar] [CrossRef]
- Faris, H.; Hassonah, M.A.; Ala’M, A.Z.; Mirjalili, S.; Aljarah, I. A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture. Neural Comput. Appl. 2018, 30, 2355–2369. [Google Scholar] [CrossRef]
- Wang, X.; Luo, D.; Zhao, X.; Sun, Z. Estimates of energy consumption in China using a self-adaptive multi-verse optimizer-based support vector machine with rolling cross-validation. Energy 2018, 152, 539–548. [Google Scholar] [CrossRef]
- Jang, J.S. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Ahmed, K.; Ewees, A.A.; El Aziz, M.A.; Hassanien, A.E.; Gaber, T.; Tsai, P.W.; Pan, J.S. A Hybrid Krill-ANFIS Model for Wind Speed Forecasting. In Proceedings of the International Conference on Advanced Intelligent Systems and Informatics, Cairo, Egypt, 24–26 October 2016; pp. 365–372. [Google Scholar]
- Ewees, A.A.; El Aziz, M.A.; Hassanien, A.E. Chaotic multi-verse optimizer-based feature selection. Neural Comput. Appl. 2019, 31, 991–1006. [Google Scholar] [CrossRef]
- El Aziz, M.A.; Ewees, A.A.; Hassanien, A.E. Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation. Expert Syst. Appl. 2017, 83, 242–256. [Google Scholar] [CrossRef]
- El Aziz, M.A.; Ewees, A.A.; Hassanien, A.E.; Mudhsh, M.; Xiong, S. Multi-objective Whale Optimization Algorithm for Multilevel Thresholding Segmentation. In Advances in Soft Computing and Machine Learning in Image Processing; Springer: Berlin, Germany, 2018; pp. 23–39. [Google Scholar]
- El Aziz, M.A.; Ewees, A.A.; Hassanien, A.E. Multi-objective whale optimization algorithm for content-based image retrieval. Multimed. Tools Appl. 2018, 77, 26135–26172. [Google Scholar] [CrossRef]
Measure | Formula |
---|---|
Root Mean Square Error | |
Mean Absolute Error | |
Mean Absolute Percentage Error | |
Root Mean Squared Relative Error |
Algorithm | Values |
---|---|
MVO-ANFIS | |
ANFIS | |
GA-ANFIS | |
PSO-ANFIS | |
SCA-ANFIS | |
WOA-ANFIS |
Korea | RMSE | MAE | MAPE | RMSRE | |
---|---|---|---|---|---|
Anfis | 131.41 | 99.61 | 3.822 | 0.0493 | |
PSO | 112.63 | 78.62 | 2.983 | 0.0426 | |
GA | 113.15 | 76.57 | 2.872 | 0.0423 | |
WOA | 114.76 | 78.92 | 3.128 | 0.0458 | |
SCA | 122.3 | 86.7 | 3.396 | 0.0479 | |
MVO | 112.44 | 73.11 | 2.867 | 0.0422 | |
Italy | RMSE | MAE | MAPE | RMSRE | |
Anfis | 82.48 | 63.49 | 5.037 | 0.064 | |
PSO | 67.33 | 48.81 | 3.824 | 0.053 | |
GA | 67.68 | 44.94 | 3.530 | 0.057 | |
WOA | 72.45 | 54.45 | 4.209 | 0.057 | |
SCA | 62.1 | 45.6 | 3.614 | 0.050 | |
MVO | 61.72 | 44.60 | 3.455 | 0.049 |
Month/Year | Korea | Italy |
---|---|---|
September 2017 | 2280.11 | 1445.96 |
October 2017 | 2280.11 | 1273.87 |
November 2017 | 2280.11 | 1363.20 |
December 2017 | 2285.86 | 1445.96 |
January 2018 | 2333.02 | 1445.96 |
February 2018 | 2338.67 | 1360.79 |
March 2018 | 2338.67 | 1428.12 |
April 2018 | 2367.22 | 1445.96 |
May 2018 | 2367.22 | 1416.62 |
June 2018 | 2355.22 | 1445.96 |
July 2018 | 2367.22 | 1445.96 |
August 2018 | 2367.50 | 1412.74 |
Country | ANFIS | PSO-ANFIS | GA-ANFIS | WOA-ANFIS | SCA-ANFIS |
---|---|---|---|---|---|
Korea | 0.000 | 0.508 | 0.011 | 0.000 | 0.001 |
Italy | 0.000 | 0.078 | 0.033 | 0.000 | 0.049 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-qaness, M.A.A.; Abd Elaziz, M.; Ewees, A.A.; Cui, X. A Modified Adaptive Neuro-Fuzzy Inference System Using Multi-Verse Optimizer Algorithm for Oil Consumption Forecasting. Electronics 2019, 8, 1071. https://doi.org/10.3390/electronics8101071
Al-qaness MAA, Abd Elaziz M, Ewees AA, Cui X. A Modified Adaptive Neuro-Fuzzy Inference System Using Multi-Verse Optimizer Algorithm for Oil Consumption Forecasting. Electronics. 2019; 8(10):1071. https://doi.org/10.3390/electronics8101071
Chicago/Turabian StyleAl-qaness, Mohammed A. A., Mohamed Abd Elaziz, Ahmed A. Ewees, and Xiaohui Cui. 2019. "A Modified Adaptive Neuro-Fuzzy Inference System Using Multi-Verse Optimizer Algorithm for Oil Consumption Forecasting" Electronics 8, no. 10: 1071. https://doi.org/10.3390/electronics8101071
APA StyleAl-qaness, M. A. A., Abd Elaziz, M., Ewees, A. A., & Cui, X. (2019). A Modified Adaptive Neuro-Fuzzy Inference System Using Multi-Verse Optimizer Algorithm for Oil Consumption Forecasting. Electronics, 8(10), 1071. https://doi.org/10.3390/electronics8101071