Mesh-Grounded Monopolar Hexagonal Microstrip Antenna for Artillery-Launched Observation Round
Abstract
:1. Introduction
2. Antenna Design and Analysis
2.1. Configuration
2.2. Design Principle and Field Distribution
3. Measurement Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- James, J.R.; Hall, P.S.; Wood, C. Microstrip Antenna Theory and Design, Vol. 1; Peter Peregrinus: London, UK, 1981. [Google Scholar]
- Garg, R.; Bahl, P.; Ittipiboon, A. Microstrip Antenna Design Handbook; Artech House: Dedham, MA, USA, 2001. [Google Scholar]
- Zaid, J.; Abdulhadi, A.E.; Denidni, T.A. Miniaturized Multi-Port Microstrip Patch Antenna Using Metamaterial for Passive UHF RFID-Tag Sensor Applications. Sensors 2019, 19, 1982. [Google Scholar] [CrossRef] [PubMed]
- Ojaroudi Parchin, N.; Jahanbakhsh Basherlou, H.; Al-Yasir, Y.; Abd-Alhameed, R.; Abdulkhaleq, A.; Noras, J. Recent Developments of Reconfigurable Antennas for Current and Future Wireless Communication Systems. Electronics 2019, 8, 128. [Google Scholar] [CrossRef]
- Hasan, M.; Rahman, M.; Faruque, M.; Islam, M.; Khandaker, M. Electrically Compact SRR-Loaded Metamaterial Inspired Quad Band Antenna for Bluetooth/WiFi/WLAN/WiMAX System. Electronics 2019, 8, 790. [Google Scholar] [CrossRef]
- Rahman, M.; Faruque, M.; Ahamed, E.; Islam, M.; Singh, M. Nickel Particle-Based Compact Flexible Antenna for Modern Communication Systems. Electronics 2019, 8, 787. [Google Scholar] [CrossRef]
- Khan, T.; Rahman, M.; Akram, A.; Amin, Y.; Tenhunen, H. A Low-Cost CPW-Fed Multiband Frequency Reconfigurable Antenna for Wireless Applications. Electronics 2019, 8, 900. [Google Scholar] [CrossRef]
- Rahman, M.; Park, J. The Smallest Form Factor UWB Antenna with Quintuple Rejection Bands for IoT Applications Utilizing RSRR and RCSRR. Sensors 2018, 18, 911. [Google Scholar] [CrossRef]
- Iqbal, A.; Smida, A.; Mallat, N.; Islam, M.; Kim, S. A Compact UWB Antenna with Independently Controllable Notch Bands. Sensors 2019, 19, 1411. [Google Scholar] [CrossRef]
- Wong, H.; So, K.K.; Gao, X. Bandwidth Enhancement of a Monopolar Patch Antenna with V-Shaped Slot for Car-to-Car and WLAN Communications. IEEE Trans. Veh. Technol. 2016, 65, 1130–1136. [Google Scholar] [CrossRef]
- Yoon, S.; Tak, J.; Choi, J.; Park, Y.M. Conformal Monopolar Antenna for UAV Applications. In Proceedings of the 2017 IEEE Int’l Symposium on Antennas and Propagation & USNC/URSI Nat’l Radio Science Meeting, San Diego, CA, USA, 9–14 July 2017; pp. 517–518. [Google Scholar] [CrossRef]
- Burberry, B.A.; Foster, P.R. New Kind of Microstrip Antenna: The Monopolar Wire Patch Antenna. Electron. Lett. 1994, 30, 745. [Google Scholar] [CrossRef]
- Al-Zoubi, A.; Yang, F.; Kishk, A. A Broadband Center-Fed Circular Patch-Ring Antenna with a Monopole Like Radiation Pattern. IEEE Trans. Antennas Propag. 2009, 57, 789–792. [Google Scholar] [CrossRef]
- Liu, J.; Xue, Q.; Wong, H.; Lai, H.W.; Long, Y. Design and Analysis of a Low-Profile and Broadband Microstrip Monopolar Patch Antenna. IEEE Trans. Antennas Propag. 2013, 61, 11–18. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, S.; Li, Y.; Long, Y. Broadband Monopolar Microstrip Patch Antenna with Shorting Vias and Coupled Ring. IEEE Antennas Wireless Propag. Lett. 2014, 13, 39–42. [Google Scholar] [CrossRef]
- Caloz, C.; Itoh, T. Electromagnetic Metamaterials; Wiley: New York, NY, USA, 2006. [Google Scholar]
- Lai, A.; Leong, K.M.K.H.; Itoh, T. Infinite Wavelength Resonant Antennas with Monopolar Radiation Pattern Based on Periodic Structures. IEEE Trans. Antennas Propag. 2007, 55, 868–876. [Google Scholar] [CrossRef]
- Lee, J.-G.; Lee, J.-H. Zeroth Order Resonance Loop Antenna. IEEE Trans. Antennas Propag. 2007, 55, 994–997. [Google Scholar] [CrossRef]
- Pyo, S.; Han, S.-M.; Baik, J.-W.; Kim, Y.-S. A Slot-Loaded Composite Right/Left-Handed Transmission Line for a Zeroth-Order Resonant Antenna with Improved Efficiency. IEEE Trans. Microw. Theory Tech. 2009, 57, 2775–2782. [Google Scholar] [CrossRef]
- Sievenpiper, D.; Zhang, L.; Broas, R.F.J.; Alexopolous, N.G.; Yablonovitch, E. High-Impedance Electromagnetic Surfaces with a Forbidden Frequency Band. IEEE Trans. Microw. Theory Tech. 1999, 47, 2059–2074. [Google Scholar] [CrossRef]
- Moosazadeh, M.; Ghobadi, C.; Esmati, Z. Monopole Antenna Based on Wrench-Shaped Slot on Circular Disc Patch for UWB Application. Microw. Opt. Technol. Lett. 2011, 53, 1927–1931. [Google Scholar] [CrossRef]
- Sedghi, T.; Rafii, V.; Moosazadeh, M. UWB Monopole Antenna with Compact Polygon-Shaped Patch for Portable Devices. Appl. Comput. Electromagn. Soc. J. 2014, 29, 67. [Google Scholar]
- Esmati, Z.; Moosazadeh, M. Band-Notched CPW-FED UWB Antenna Using V-shaped Fractal Elements. Microw. Opt. Technol. Lett. 2015, 57, 2533–2536. [Google Scholar] [CrossRef]
- Zhu, X.-Q.; Guo, Y.-X.; Wu, W. A Novel Dual-Band Antenna for Wireless Communication Applications. IEEE Antennas Wireless Propag. Lett. 2016, 15, 516–519. [Google Scholar] [CrossRef]
- Nguyen-Trong, N.; Piotrowski, A.; Kaufmann, T.; Fumeaux, C. Low-Profile Wideband Monopolar UHF Antennas for Integration onto Vehicles and Helmets. IEEE Trans. Antennas Propag. 2016, 64, 2562–2568. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, L.; Wang, J.; Wu, W. Three-Dimensional Circular Patch Antenna Under TM02 Mode with Improved Impedance Matching. Electron. Lett. 2019, 55, 169–170. [Google Scholar] [CrossRef]
Parameters | Size (mm) | Parameters | Size (mm) |
---|---|---|---|
Feed patch length (PF) | 13 | GND(Ground) gap mesh width (wg) | 0.6 |
Radiator upper length (PTS) | 7.5 | GND slot length (LS) | 7.0 |
Radiator lower length (PTL) | 15 | GND pad length (LF) | 4.5 |
Gap between patches (g) | 0.2 | GND feed slot upper length (LTS) | 2.4 |
GND mesh width (w) | 0.2 | GND feed slot lower length (LTL) | 4.5 |
Substrate diameter (D) | 70 | Substrate thickness (h) | 1.6 |
Ref., Year | Antenna Size, mm2 (/λmin1) | Height, mm (/λmin1) | Bandwidth (%) | Antenna Type |
---|---|---|---|---|
[21], 2011 | 22 (0.227) × 28 (0.289) | 1 (0.010) | 117% | Ultrawideband monopole |
[22], 2014 | 19 (0.190) × 19 (0.190) | 1 (0.010) | 133% (VSWR < 2) | Ultrawideband monopole |
[23], 2015 | 25 (0.263) × 25 (0.263) | 1.6 (0.017) | 143% (VSWR < 2) | Ultrawideband monopole |
[10], 2016 | π × 32 (0.514) × 32 (0.514) | 3 (0.048) | 32.2% | Monopolar microstrip |
[24], 2016 | π × 30.8 (0.572) × 30.8 (0.572) | 6.3 (0.117) | 15.4% | Monopolar microstrip |
[25], 2016 | 80 (0.213) × 80 (0.213) | 26 (0.069) | 96.8% | Monopolar microstrip |
[26], 2019 | π × 80 (0.987) × 80 (0.987) | 10 (0.123) | 12.7% | Monopolar microstrip |
[19], 2009 | 35 (0.502) × 35 (0.502) | 0.76 (0.011) | 0.7% | Zeroth-order resonant |
This Work | π × 35 (0.651) × 35 (0.651) | 1.6 (0.030) | 7.78% | Monopolar microstrip |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.; Kim, K.; Pyo, S. Mesh-Grounded Monopolar Hexagonal Microstrip Antenna for Artillery-Launched Observation Round. Electronics 2019, 8, 1279. https://doi.org/10.3390/electronics8111279
Lee D, Kim K, Pyo S. Mesh-Grounded Monopolar Hexagonal Microstrip Antenna for Artillery-Launched Observation Round. Electronics. 2019; 8(11):1279. https://doi.org/10.3390/electronics8111279
Chicago/Turabian StyleLee, Dongho, Kichul Kim, and Seongmin Pyo. 2019. "Mesh-Grounded Monopolar Hexagonal Microstrip Antenna for Artillery-Launched Observation Round" Electronics 8, no. 11: 1279. https://doi.org/10.3390/electronics8111279
APA StyleLee, D., Kim, K., & Pyo, S. (2019). Mesh-Grounded Monopolar Hexagonal Microstrip Antenna for Artillery-Launched Observation Round. Electronics, 8(11), 1279. https://doi.org/10.3390/electronics8111279