An Enhanced Logic Encryption Method with a Fully Correlated Key Interdependency Block
Abstract
:1. Introduction
- A key interdependency block based on sequential logic is proposed. The block achieves fully correlated key interdependency among the primary keys.
- A rare node selection algorithm is proposed for key-gate insertion location selection. The algorithm ensures the Hamming distance is between 40% and 50% between the correct and wrong outputs.
- An optimized pairwise key-gate insertion framework is proposed, and the framework can resist path sensitization attack.
2. Background
2.1. Attack Model
2.2. Preliminary Work
2.3. Logic Encryption Based on Rare Node Analysis
2.4. Path Sensitization Attack
3. Framework of the Enhanced Logic Encryption Method
3.1. Fully Correlated Key Interdependency Block
3.2. Rare Node Analysis for Key-Gates’ Locations
Algorithm 1 Key-gate location strategy based on rare nodes. | |
Require: | |
1: G | ▹ Gate level netlist. |
2: P | ▹ List of random patterns. |
3: t | ▹ Stimulation patterns of time. |
Ensure: R | ▹ List of rare nodes. |
4: , P, G; | |
5: ; | |
6: for Each element p in P do | |
7: , P, t; | |
8: ; | |
9: end for | |
10: Set Pth; | |
11: R ← Pth, Pt, Ps; |
3.3. Enhanced Logic Encryption Methodology
Algorithm 2 Proposed logic encryption algorithm. | |
Require: | |
1: ODN | ▹ Original design netlist. |
2: LOI | ▹ Locations of insertion. |
3: NOR | ▹ Number of rare nodes. |
4: RN | ▹ List of rare nodes. |
Ensure: EDN | ▹ Encrypted design netlist. |
5: ; | ▹ Search for key-gate’s locations utilizing the rare nodes analysis method. |
6: for ( to ) do | |
7: if then | |
8: ; | ▹ A key-gate is inserted into the rare node. |
9: ; | ▹ Mark the gate whose input is directly connected to the key-gate. |
10: ; | ▹ Determine the ICODbased on the marked gate(s). |
11: ; | ▹ Search for the nodes without key-gates. |
12: ; | ▹ Update the EDNby inserting key-gates. |
13: end if | |
14: end for |
4. Experimentation
4.1. Experimental Setup
4.2. Rare Node Analysis
4.3. Output Corruption Analysis
4.4. Area Overhead Analysis
4.5. An Illustrative Minimum Working Example
5. Conclusions
6. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Yasin, M.; Rajendran, J.J.; Sinanoglu, O.; Karri, R. On Improving the Security of Logic Locking. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2016, 35, 1411–1424. [Google Scholar] [CrossRef]
- Shen, Y.; Rezaei, A.; Zhou, H. SAT based bit-flipping attack on logic encryptions. In Proceedings of the 2018 Design, Automation Test in Europe Conference Exhibition (DATE), Dresden, Germany, 19–23 March 2018; pp. 629–632. [Google Scholar] [CrossRef]
- Guin, U.; Zhou, Z.; Singh, A. Robust Design-for-Security Architecture for Enabling Trust in IC Manufacturing and Test. IEEE Trans. Very Large Scale Integr. Syst. 2018. [Google Scholar] [CrossRef]
- Aitken, R. Panel: Is design-for-security the new DFT? In Proceedings of the Vlsi Test Symposium, Napa, CA, USA, 27–29 April 2015. [Google Scholar]
- Rajendran, J.; Zhang, H.; Zhang, C.; Rose, G.S.; Pino, Y.; Sinanoglu, O.; Karri, R. Fault Analysis-Based Logic Encryption. IEEE Trans. Comput. 2015, 64, 410–424. [Google Scholar] [CrossRef]
- Taatizadeh, P.; Nicolici, N. An automated SAT based method for the design of on-chip bit-flip detectors. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, Irvine, CA, USA, 13–16 November 2017. [Google Scholar]
- Yu, W.L.; Touba, N.A. Improving logic obfuscation via logic cone analysis. In Proceedings of the 2015 16th Latin-American Test Symposium (LATS), Puerto Vallarta, Mexico, 25–27 March 2015; pp. 1–6. [Google Scholar]
- Plaza, S.M.; Markov, I.L. Solving the Third-Shift Problem in IC Piracy With Test-Aware Logic Locking. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2015, 34, 961–971. [Google Scholar] [CrossRef]
- Karmakar, R.; Chattopadhyay, S.; Kapur, R. Enhancing security of logic encryption using embedded key generation unit. In Proceedings of the 2017 International Test Conference in Asia (ITC-Asia), Taipei, Taiwan, 13–15 September 2017; pp. 131–136. [Google Scholar] [CrossRef]
- Karmakar, R.; Kumar, H.; Chattopadhyay, S. On Finding Suitable Key-Gate Locations In Logic Encryption. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Chakraborty, R.S.; Bhunia, S. HARPOON: An Obfuscation-Based SoC Design Methodology for Hardware Protection. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2009. [Google Scholar] [CrossRef]
- Roy, J.A.; Koushanfar, F.; Markov, I.L. Ending Piracy of Integrated Circuits. Computer 2010, 43, 30–38. [Google Scholar] [CrossRef]
- Yasin, M.; Mazumdar, B.; Rajendran, J.J.V.; Sinanoglu, O. SARLock: SAT attack resistant logic locking. In Proceedings of the 2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), McLean, VA, USA, 3–5 May 2016; pp. 236–241. [Google Scholar] [CrossRef]
- Xie, Y.; Srivastava, A. Anti-SAT: Mitigating SAT Attack on Logic Locking. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2019, 38, 199–207. [Google Scholar] [CrossRef]
- Karmakar, R.; Prasad, N.; Chattopadhyay, S.; Kapur, R.; Sengupta, I. A New Logic Encryption Strategy Ensuring Key Interdependency. In Proceedings of the International Conference on Vlsi Design & International Conference on Embedded Systems, Hyderabad, India, 7–11 January 2017. [Google Scholar]
- Dupuis, S.; Ba, P.; Di Natale, G.; Flottes, M.; Rouzeyre, B. A novel hardware logic encryption technique for thwarting illegal overproduction and Hardware Trojans. In Proceedings of the 2014 IEEE 20th International On-Line Testing Symposium (IOLTS), Girona, Spain, 7–9 July 2014; pp. 49–54. [Google Scholar] [CrossRef]
- Rajendran, J.; Garg, S. Logic Encryption. In Hardware Protection through Obfuscation; Forte, D., Bhunia, S., Tehranipoor, M., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Hai, Z.; Jiang, R.; Kong, S. CycSAT: SAT based attack on cyclic logic encryptions. In Proceedings of the 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Irvine, CA, USA, 13–17 November 2017. [Google Scholar]
- Zaikin, O.; Kochemazov, S. An Improved SAT-Based Guess-and-Determine Attack on the Alternating Step Generator. In Proceedings of the Information Security: 20th International Conference, ISC 2017, Ho Chi Minh City, Vietnam, 22–24 November 2017. [Google Scholar]
- Salmani, H.; Tehranipoor, M.; Plusquellic, J. A Novel Technique for Improving Hardware Trojan Detection and Reducing Trojan Activation Time. IEEE Trans. Very Large Scale Integr. Syst. 2011, 20, 112–125. [Google Scholar] [CrossRef]
- Wackerly, D.; Mendenhall, W.; Scheaffer, R.L. Mathematical Statistics with Applications; Thomson Brooks/Cole: Belmont, CA, USA, 2008. [Google Scholar]
- Hansen, M.C.; Yalcin, H.; Hayes, J.P. Unveiling the ISCAS-85 benchmarks: A case study in reverse engineering. IEEE Des. Test Comput. 1999, 16, 72–80. [Google Scholar] [CrossRef]
- Saha, S.; Chakraborty, R.S.; Nuthakki, S.S.; Anshul; Mukhopadhyay, D. Improved Test Pattern Generation for Hardware Trojan Detection Using Genetic Algorithm and Boolean Satisfiability. In Proceedings of the CHES 2015: 17th InternationalWorkshop, Cryptographic Hardware and Embedded Systems, Saint-Malo, France, 13–16 September 2015. [Google Scholar]
- Huang, Y.; Bhunia, S.; Mishra, P. MERS: Statistical Test Generation for Side-Channel Analysis based Trojan Detection. In Proceedings of the ACM Sigsac Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016; pp. 130–141. [Google Scholar]
- Chakraborty, R.S.; Wolff, F.; Paul, S.; Papachristou, C.; Bhunia, S. MERO: A Statistical Approach for Hardware Trojan Detection. In International Workshop on Cryptographic Hardware and Embedded Systems; Springer: Berlin/Heidelberg, Germany, 2009; pp. 396–410. [Google Scholar]
- Roy, J.A.; Koushanfar, F.; Markov, I.L. Ending Piracy of Integrated Circuits. In Proceedings of the 2018 Design, Automation & Test in Europe, Munich, Germany, 10–14 March 2008; pp. 30–38. [Google Scholar]
- Shamsi, K.; Li, M.; Meade, T.; Zhao, Z.; Pan, D.Z.; Jin, Y. AppSAT: Approximately deobfuscating integrated circuits. In Proceedings of the 2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), Mclean, VA, USA, 1–5 May 2017; pp. 95–100. [Google Scholar] [CrossRef]
- Shen, Y.; Zhou, H. Double DIP: Re-Evaluating Security of Logic Encryption Algorithms. In Proceedings of the on Great Lakes Symposium on VLSI 2017, Banff, AB, Canada, 10–12 May 2017. [Google Scholar]
Circuit | Pt | Ps | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.00 | 0.00∼0.10 | 0.10∼0.15 | 0.15∼0.20 | 0.20∼0.25 | 0.25 | 0.00 | 0.00∼0.10 | 0.10∼0.20 | 0.20∼0.30 | 0.30∼0.40 | 0.40∼0.50 | 0.50 | |
c432 | 0 | 9 | 20 | 17 | 92 | 0 | 0 | 0 | 9 | 20 | 17 | 64 | 28 |
c1355 | 0 | 43 | 8 | 3 | 206 | 1 | 0 | 40 | 3 | 8 | 3 | 106 | 101 |
c1908 | 0 | 41 | 6 | 22 | 163 | 4 | 0 | 36 | 5 | 6 | 22 | 96 | 71 |
c2670 | 4 | 30 | 11 | 75 | 513 | 1 | 0 | 14 | 16 | 11 | 75 | 250 | 264 |
c3540 | 0 | 104 | 20 | 52 | 342 | 2 | 0 | 22 | 82 | 20 | 52 | 223 | 121 |
c5315 | 0 | 33 | 40 | 103 | 507 | 3 | 0 | 12 | 21 | 40 | 103 | 241 | 269 |
c6288 | 0 | 20 | 20 | 98 | 1278 | 4 | 0 | 0 | 20 | 20 | 98 | 1010 | 272 |
c7552 | 2 | 27 | 18 | 109 | 928 | 3 | 2 | 7 | 20 | 18 | 109 | 497 | 433 |
AES | 193 | 1771 | 1478 | 2287 | 7080 | 12 | 190 | 1753 | 3793 | 6701 | 0 | 184 | 201 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Ma, H.; Song, K.; Zhao, Y. An Enhanced Logic Encryption Method with a Fully Correlated Key Interdependency Block. Electronics 2019, 8, 1392. https://doi.org/10.3390/electronics8121392
He J, Ma H, Song K, Zhao Y. An Enhanced Logic Encryption Method with a Fully Correlated Key Interdependency Block. Electronics. 2019; 8(12):1392. https://doi.org/10.3390/electronics8121392
Chicago/Turabian StyleHe, Jiaji, Haocheng Ma, Kaiyue Song, and Yiqiang Zhao. 2019. "An Enhanced Logic Encryption Method with a Fully Correlated Key Interdependency Block" Electronics 8, no. 12: 1392. https://doi.org/10.3390/electronics8121392
APA StyleHe, J., Ma, H., Song, K., & Zhao, Y. (2019). An Enhanced Logic Encryption Method with a Fully Correlated Key Interdependency Block. Electronics, 8(12), 1392. https://doi.org/10.3390/electronics8121392