Multiresolution Virtual Experiments for Microwave Imaging of Complex Scenarios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mathematical Formulation and DIVE Scheme
2.2. Multiresolution DIVE
3. Results
3.1. Breast Phantom Imaging
3.2. Tree Trunk Inspection
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Colton, D.; Kress, R. Inverse Acoustic and Electromagnetic Scattering Theory, 2nd ed.; Springer: Berlin, Germany, 1998; ISBN 9781461449423. [Google Scholar]
- Ambrosanio, M.; Kosmas, P.; Pascazio, V. A Multi-Threshold Iterative DBIM-Based Algorithm for the Imaging of Heterogeneous Breast Tissues. IEEE Trans. Biomed. Eng. 2018. [Google Scholar] [CrossRef]
- Miao, Z.; Kosmas, P. Multiple-Frequency DBIM-TwIST Algorithm for Microwave Breast Imaging. IEEE Trans. Antennas Propag. 2017, 65, 2507–2516. [Google Scholar] [CrossRef]
- Bisio, I.; Estatico, C.; Fedeli, A.; Lavagetto, F.; Pastorino, M.; Randazzo, A.; Sciarrone, A. Brain Stroke Microwave Imaging by Means of a Newton-Conjugate-Gradient Method in Lp Banach Spaces. IEEE Trans. Microw. Theory Tech. 2018, 66, 3668–3682. [Google Scholar] [CrossRef]
- Zamani, A.; Abbosh, A.M.; Mobashsher, A.T. Fast Frequency-Based Multistatic Microwave Imaging Algorithm with Application to Brain Injury Detection. IEEE Trans. Microw. Theory Tech. 2016, 64, 653–662. [Google Scholar] [CrossRef]
- Neira, L.M.; van Veen, B.D.; Hagness, S.C. High-Resolution Microwave Breast Imaging Using a 3-D Inverse Scattering Algorithm with a Variable-Strength Spatial Prior Constraint. IEEE Trans. Antennas Propag. 2017, 65, 6002–6014. [Google Scholar] [CrossRef]
- Maurizka, A.; Munir, A. Experimental validation of microwave imaging for wood inspection. In Proceedings of the Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL), Singapore, 19–22 November 2017; pp. 1709–1712. [Google Scholar]
- Pastorino, M.; Randazzo, A.; Fedeli, A.; Salvadè, A.; Poretti, S.; Maffongelli, M.; Monleone, R.; Lanini, M. A microwave tomographic system for wood characterization in the forest products industry. Wood Mater. Sci. Eng. 2015, 10, 75–85. [Google Scholar] [CrossRef]
- Bevacqua, M.; Bellizzi, G.; Isernia, T.; Crocco, L. A Method for Quantitative Imaging of Electrical Properties of Human Tissues from Only Amplitude Electromagnetic Data. Inverse Probl. 2018, 35, 025006. [Google Scholar] [CrossRef]
- Bevacqua, M.; Bellizzi, G.; Isernia, T.; Crocco, L. A Method for Effective Permittivity and Conductivity Mapping of Biological Scenarios via Segmented Contrast Source Inversion. Prog. Electromagn. Res. 2019, 164, 1–15. [Google Scholar]
- Leone, G.; Brancaccio, A.; Pierri, R. Linear and quadratic inverse scattering for angularly varying circular cylinders. J. Opt. Soc. Am. A 1999, 16, 2887–2895. [Google Scholar] [CrossRef]
- Marengo, E.A.; Galagarza, E.S.; Solimene, R. Data-driven linearizing approach in inverse scattering. J. Opt. Soc. Am. A 2017, 34, 1561–1576. [Google Scholar] [CrossRef]
- Pastorino, M.; Massa, A.; Caorsi, S. A microwave inverse scattering technique for image reconstruction based on a genetic algorithm. IEEE Trans. Instrum. Meas. 2000, 49, 573–578. [Google Scholar] [CrossRef]
- Habashy, T.M.; Groom, R.; Spies, B. A non linear approach to electromagnetic scattering. J. Geophys. Res. 1993, 98, 1759–1775. [Google Scholar] [CrossRef]
- Chew, W.C.; Wang, Y.M. Reconstruction of two-dimensional permittivity distribution using the distorted born iterative method. IEEE Trans. Med. Imaging 1990, 9, 218225. [Google Scholar] [CrossRef]
- Isernia, T.; Pascazio, V.; Pierri, R. A non linear estimation method in tomographic imaging. IEEE Trans. Geosci. Remote Sens. 1997, 35, 910–923. [Google Scholar] [CrossRef]
- van den Berg, P.M.; Kleinman, R.E. A contrast source inversion method. Inverse Probl. 1997, 13, 1607. [Google Scholar] [CrossRef]
- Mojabi, P.; LoVetri, J. Overview and Classification of Some Regularization Techniques for the Gauss-Newton Inversion Method Applied to Inverse Scattering Problems. IEEE Trans. Antennas Propag. 2009, 57, 2658–2665. [Google Scholar] [CrossRef]
- Isernia, T.; Pascazio, V.; Pierri, R. On the Local Minima in a Tomographic Imaging Technique. IEEE Trans Geosci. Rem. Sens. 2001, 39, 1596–1607. [Google Scholar] [CrossRef]
- Bucci, O.M.; Crocco, L.; Isernia, T.; Pascazio, V. Inverse scattering problems with multifrequency data: Reconstruction capabilities and solution strategies. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1749–1756. [Google Scholar] [CrossRef]
- Palmeri, R.; Bevacqua, M.T.; Crocco, L.; Isernia, T.; Di Donato, L. Microwave Imaging via Distorted Iterated Virtual Experiments. IEEE Trans. Antennas Propag. 2017, 65, 829–838. [Google Scholar] [CrossRef]
- Bucci, O.M.; Crocco, L.; Isernia, T.; Pascazio, V. An adaptive wavelet-based approach for non-destructive evaluation applications. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Salt Lake City, UT, USA, 16–21 July 2000; pp. 1756–1759. [Google Scholar]
- Bertero, M.; Boccacci, P. Introduction to Inverse Problems in Imaging; Institute of Physics: Bristol, UK, 1998. [Google Scholar]
- Bevacqua, M.; Di Donato, L. Improved TV-CS Approches for Inverse Scattering Problem. Sci. World J. 2015. [Google Scholar] [CrossRef]
- Chew, W.C.; Lin, J.H. A frequency-hopping approach for microwave imaging of large inhomogeneous bodies. IEEE Microw. Guided Wave Lett. 2002, 5, 439–441. [Google Scholar] [CrossRef]
- Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Machine Intell. 1989, 2, 674–693. [Google Scholar] [CrossRef]
- Palmeri, R.; Bevacqua, M.T.; Scapaticci, R.; Morabito, A.F.; Crocco, L.; Isernia, T. Biomedical imaging via wavelet-based regularization and distorted iterated virtual experiments. In Proceedings of the 2017 International Conference on Electromagnetics in Advanced Applications, Verona, Italy, 11–15 September 2017; pp. 1381–1384. [Google Scholar]
- Fear, E.; Hagness, S.; Meaney, P.; Okoniewski, M.; Stuchly, M. Enhancing breast tumor detection with near-field imaging. IEEE Microw. 2002, 3, 48–56. [Google Scholar] [CrossRef]
- Bevacqua, M.T.; Scapaticci, R. A Compressive Sensing Approach for 3D Breast Cancer Microwave Imaging with Magnetic Nanoparticles as Contrast Agent. IEEE Trans. Med. Imaging 2016, 35, 665–673. [Google Scholar] [CrossRef]
- Scapaticci, R.; Catapano, I.; Crocco, L. Wavelet-based adaptive multiresolution inversion for quantitative microwave imaging of breast tissues. IEEE Trans. Antennas Propag. 2012, 60, 3717–3726. [Google Scholar] [CrossRef]
- Scapaticci, R.; Kosmas, P.; Crocco, L. Wavelet-Based Regularization for Robust Microwave Imaging in Medical Applications. IEEE Trans. Biomed. Eng. 2015, 64, 1195–1202. [Google Scholar] [CrossRef]
- Boero, F.; Fedeli, A.; Lanini, M.; Maffongelli, M.; Monteleone, R.; Pastorino, M.; Randazzo, A.; Salvadè, A.; Sansalone, A. Microwave Tomography for the inspection of wood materials: Imaging system and experimental results. IEEE Microw. Theory Techn. 2018, 66, 3497–3510. [Google Scholar] [CrossRef]
- Kaestner, A.P.; Baath, L.B. Microwave polarimetry tomography of wood. IEEE Sens. J. 2005, 5, 209–2015. [Google Scholar] [CrossRef]
- Fedeli, A.; Pastorino, M.; Randazzo, A.; Lanini, M.; Maffongelli, M.; Monleone, R. Wood characterization by using microwave inverse scattering: Experimental results. In Proceedings of the 2017 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Pavia, Italy, 20–22 September 2017; pp. 1–3. [Google Scholar]
- Bucur, V. Nondestructive Characterization and Imaging of Wood; Springer: Berlin, Germany, 2003; ISBN 9783662089866. [Google Scholar]
- Catapano, I.; Crocco, L. An imaging method for concealed targets. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1301–1309. [Google Scholar] [CrossRef]
- Zastrow, E.; Davis, S.K.; Lazebnik, M.; Kelcz, F.; Van Veem, B.D.; Hagness, S.C. Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast. IEEE Trans. Biomed. Eng. 2008, 55, 2792–2800. [Google Scholar] [CrossRef]
- Catapano, I.; Di Donato, L.; Crocco, L.; Bucci, O.M.; Morabito, A.F.; Isernia, T.; Massa, R. On quantitative microwave tomography of female breast. Prog. Electromagn. Res. 2009, 97, 75–93. [Google Scholar] [CrossRef]
- Bucci, O.M.; Isernia, T. Electromagnetic inverse scattering: Retrievable information and measurement strategies. Radio Sci. 1997, 32, 2123–2138. [Google Scholar] [CrossRef]
- Fu, L.; Liu, S.S.; Liu, L. Internal structure characterization of living tree trunk cross-section using GPR: Numerical examples and field data analysis. In Proceedings of the 15th International Conference on Ground Penetrating Radar, Brussels, Belgium, 30 June–4 July 2014; pp. 155–160. [Google Scholar]
- Di Donato, L.; Palmeri, R.; Sorbello, G.; Isernia, T.; Crocco, L. A new linear distorted wave inversion method for microwave imaging via virtual experiments. IEEE Microw. Theory Techn. 2016, 64, 2478–2488. [Google Scholar] [CrossRef]
Frequency | NMSE on ε | NMSE on ε′ | NMSE on ε″ | NMSE on ε from [31] |
---|---|---|---|---|
1 GHz | 0.29 | 0.28 | 0.69 | 0.41 |
2 GHz | 0.19 | 0.18 | 0.47 | Not provided |
3 GHz | 0.13 | 0.12 | 0.45 | 0.28 |
4 GHz | 0.11 | 0.10 | 0.42 | - |
Frequency | NMSE on ε | NMSE on ε′ | NMSE on ε″ | NMSE on ε from [31] |
---|---|---|---|---|
1 GHz | 0.22 | 0.20 | 0.66 | 0.39 |
2 GHz | 0.15 | 0.14 | 0.47 | Not provided |
3 GHz | 0.10 | 0.09 | 0.41 | 0.29 |
4 GHz | 0.08 | 0.07 | 0.40 | - |
Frequency | NMSE on ε | NMSE on ε′ | NMSE on ε″ |
---|---|---|---|
100 MHz | 0.15 | 0.14 | 0.19 |
400 MHz | 0.05 | 0.05 | 0.28 |
700 MHz | 0.03 | 0.03 | 0.63 |
1 GHz | 0.02 | 0.02 | 0.97 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bevacqua, M.T.; Palmeri, R.; Scapaticci, R. Multiresolution Virtual Experiments for Microwave Imaging of Complex Scenarios. Electronics 2019, 8, 153. https://doi.org/10.3390/electronics8020153
Bevacqua MT, Palmeri R, Scapaticci R. Multiresolution Virtual Experiments for Microwave Imaging of Complex Scenarios. Electronics. 2019; 8(2):153. https://doi.org/10.3390/electronics8020153
Chicago/Turabian StyleBevacqua, Martina T., Roberta Palmeri, and Rosa Scapaticci. 2019. "Multiresolution Virtual Experiments for Microwave Imaging of Complex Scenarios" Electronics 8, no. 2: 153. https://doi.org/10.3390/electronics8020153
APA StyleBevacqua, M. T., Palmeri, R., & Scapaticci, R. (2019). Multiresolution Virtual Experiments for Microwave Imaging of Complex Scenarios. Electronics, 8(2), 153. https://doi.org/10.3390/electronics8020153