Bio-Inspired Autonomous Visual Vertical and Horizontal Control of a Quadrotor Unmanned Aerial Vehicle
Abstract
:1. Introduction
2. Tau Theory
2.1. Flying Navigation Strategies in Nature
2.2. Biological Evidence of Tau Theory
2.3. Basic Tau Strategies
2.4. Tau Coupling
2.5. Gravity Guidance Strategy
2.6. Tau Theory Link to Constant Optic Flow Approach
3. Body-Centric Quadrotor Model
3.1. Attitude and Rotation Representation
3.2. Quadrotor Body Dynamics
4. Control Scheme
4.1. Low-Level Controller
4.2. High-Level Controller
4.3. High-Level Control for Horizontal Manoeuvres
4.4. High-Level Vertical and Horizontal Control Implementation
5. Estimation of Visual Motion Parameters
5.1. Simultaneous Visual Motion Parameters Estimation
5.2. Outlier Rejection
5.3. Sensor Fusion: IMU Aided Estimation of Visual Motion Parameters (VMP)
6. Objective Tracking
6.1. Adjust Body Reference to Target Location
7. Simulations
7.1. Simulation Environment
7.2. Autonomous Tau-Based Control Simulation
8. Discussion
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
EKF | Extended Kalman Filter |
UKF | Unscented Kalman Filter |
CKF | Cubature Kalman Filter |
RMS | Root Mean Square |
FOE | Focus of Expansion |
GPS | Global Positioning System |
VMP | Visual Motion Parameters |
ROS | Robot Operating System |
UGV | Unmanned Ground Vehicle |
FoV | Field of View |
TTC | Time-to-Contact |
UAV | Unmanned Aerial Vehicle |
Appendix A
References
- Gupte, S.; Mohandas, P.I.T.; Conrad, J.M. A survey of quadrotor unmanned aerial vehicles. In Proceedings of the 2012 Proceedings of IEEE Southeastcon, Orlando, FL, USA, 15–18 March 2012; pp. 1–6. [Google Scholar]
- Kendoul, F. Survey of Advances in Guidance, Navigation, and Control of Unmanned Rotorcraft Systems. J. Field Robot. 2011, 23, 245–267. [Google Scholar] [CrossRef]
- Zhang, Z.; Xie, P.; Ma, O. Bio-inspired trajectory generation for UAV perching. In Proceedings of the 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics: Mechatronics for Human Wellbeing (AIM 2013), Wollongong, Australia, 9–12 July 2013; pp. 997–1002. [Google Scholar]
- Falanga, D.; Zanchettin, A.; Simovic, A.; Delmerico, J.; Scaramuzza, D. Vision-based autonomous quadrotor landing on a moving platform. In Proceedings of the 15th IEEE International Symposium on Safety, Security and Rescue Robotics, Conference (SSRR 2017), Shanghai, China, 11–13 October 2017; pp. 200–207. [Google Scholar]
- Horridge, G.A. The evolution of visual processing and the construction of seeing systems. Proc. R. Soc. Lond. Ser. B 1987, 230, 279–292. [Google Scholar] [CrossRef]
- Srinivasan, M.; Zhang, S.; Lehrer, M.; Collett, T. Honeybee navigation en route to the goal: Visual flight control and odometry. J. Exp. Biol. 1996, 199, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.N. A Theory of Visual Control of Braking Based on Information about Time-to-Collision. Perception 1976, 5, 437–459. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.N.; Young, D.S.; Rewt, D. How do somersaulters land on their feet? J. Exp. Psychol. 1992, 18, 1195. [Google Scholar] [CrossRef]
- Lee, D.N. Guiding movement by coupling taus. Ecol. Psychol. 1998, 10, 221–250. [Google Scholar] [CrossRef]
- Herisse, B.; Russotto, F.X.; Hamel, T.; Mahony, R. Hovering flight and vertical landing control of a VTOL Unmanned Aerial Vehicle using optical flow. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Nice, France, 22–26 September 2008. [Google Scholar]
- Bresciani, T. Modelling, Identification and Control of a Quadrotor Helicopter. Master’s Theses, Lund University, Lund, Sweden, 2008. [Google Scholar]
- Alkowatly, M.T.; Becerra, V.M.; Holderbaum, W. Body-centric Modelling, Identification, and Acceleration Tracking Control of a Quadrotor UAV. Int. J. Model. Ident. Control 2014. [Google Scholar] [CrossRef]
- Stevens, B.L.; Lewis, F.L.; Johnson, E.N. Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems; Wiley: Hoboken, NJ, USA, 2016; p. 768. [Google Scholar]
- Wang, J.H.; Sheng, J.; Tsai, H.; Chen, Y.C.; Guo, S.M.; Shieh, L.S. An Active Low-Order Fault-Tolerant State Space Self-Tuner for the Unknown Sample-Data Linear Regular System with an Input-Output Direct Feedthrough Term. Appl. Math. Sci. 2012, 6, 4813–4855. [Google Scholar]
- Lee, D.N. General Tau Theory: Evolution to date. Perception 2009, 38, 837. [Google Scholar] [CrossRef] [PubMed]
- Alkowatly, M.T.; Becerra, V.M.; Holderbaum, W. Estimation of Visual Motion Parameters Used for Bio-inspired Navigation. J. Image Graphics 2013, 1, 120–124. [Google Scholar] [CrossRef]
- Menold, P.H.; Pearson, R.K.; Allgower, F. Online outlier detection and removal. In Proceedings of the 7th IEEE Mediterranean Conference on Control and Automation (MED ’99), Haifa, Israel, 28–30 June 1999; pp. 1110–1133. [Google Scholar]
- Harris, L.R.; Jenkin, M.R.; Zikovitz, D.; Redlick, F.; Jaekl, P.; Jasiobedzka, U.T.; Jenkin, H.L.; Allison, R.S. Simulating Self-Motion I: Cues for the Perception of Motion. Virtual Real. 2002, 6, 75–85. [Google Scholar] [CrossRef]
- Hain, T.C.; Helminski, J.O. Anatomy and physiology of the normal vestibular system. Vestibular Rehabil. 2007, 11, 2–18. [Google Scholar]
- Arasaratnam, I.; Haykin, S.; Hurd, T.R. Cubature Kalman filtering for continuous-discrete systems: Theory and simulations. IEEE Trans. Signal Process. 2010, 58, 4977–4993. [Google Scholar] [CrossRef]
- Wan, E.A.; Van Der Merwe, R. The unscented Kalman filter for nonlinear estimation. Technology 2000, 153–158. [Google Scholar] [CrossRef]
- Dai, H.-D.; Dai, S.-W.; Cong, Y.-C.; Wu, G.-B. Performance Comparison of EKF/UKF/CKF for the Tracking of Ballistic Target. Telecommun. Comput. Electron. Control. 2012, 10, 1537–1542. [Google Scholar]
- Chandra, K.; Gu, D. Cubature Kalman Filter based Localization and Mapping. In Proceedings of the 18th IFAC World Congress, Milano, Italy, 28 August–2 September 2011; pp. 2121–2125. [Google Scholar]
- Wang, J.; Olson, E. AprilTag 2: Efficient and robust fiducial detection. IEEE Int. Conf. Intell. Robots Syst. 2016, 4193–4198. [Google Scholar] [CrossRef]
- Available online: http://www.ros.org/ (accessed on 29 December 2018).
- Available online: http://gazebosim.org/ (accessed on 29 December 2018).
- Furrer, F.; Burri, M.; Achtelik, M.; Siegwart, R. RotorS—A Modular Gazebo MAV Simulator Framework. In Robot Operating System (ROS): The Complete Reference (Volume 1); Koubaa, A., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 595–625. [Google Scholar]
- Available online: https://opencv.org/ (accessed on 29 December 2018).
- Available online: http://eigen.tuxfamily.org/ (accessed on 29 December 2018).
- Available online: http://www.clearpathrobotics.com/assets/guides/husky/ (accessed on 29 December 2018).
- Available online: http://higginsandsons.com/astro/ (accessed on 29 December 2018).
k | t | x | Final Goal | ||
---|---|---|---|---|---|
k < 0 | Gap not closed | ||||
k = 0 | Gap not closed | ||||
0 < k < 0.5 | Zero Touchdown | ||||
k = 0.5 | Slight Collision | ||||
0.5 < k < 1 | Slight Collision | ||||
k = 1 | Collision | ||||
k > 1 | Strong Collision |
t | Final Goal | |||||
---|---|---|---|---|---|---|
Gap y not closed | ||||||
? | ? | Error | ||||
Zero Touchdown | ||||||
Slight Collision | ||||||
Collision | ||||||
Strong Collision |
t | Final Goal | ||||
---|---|---|---|---|---|
Gap not closed | |||||
? | ? | Error | |||
Zero Touchdown | |||||
Slight Collision | |||||
Collision | |||||
Strong Collision |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armendariz, S.; Becerra, V.; Bausch, N. Bio-Inspired Autonomous Visual Vertical and Horizontal Control of a Quadrotor Unmanned Aerial Vehicle. Electronics 2019, 8, 184. https://doi.org/10.3390/electronics8020184
Armendariz S, Becerra V, Bausch N. Bio-Inspired Autonomous Visual Vertical and Horizontal Control of a Quadrotor Unmanned Aerial Vehicle. Electronics. 2019; 8(2):184. https://doi.org/10.3390/electronics8020184
Chicago/Turabian StyleArmendariz, Saul, Victor Becerra, and Nils Bausch. 2019. "Bio-Inspired Autonomous Visual Vertical and Horizontal Control of a Quadrotor Unmanned Aerial Vehicle" Electronics 8, no. 2: 184. https://doi.org/10.3390/electronics8020184
APA StyleArmendariz, S., Becerra, V., & Bausch, N. (2019). Bio-Inspired Autonomous Visual Vertical and Horizontal Control of a Quadrotor Unmanned Aerial Vehicle. Electronics, 8(2), 184. https://doi.org/10.3390/electronics8020184