Advanced Backstepping Trajectory Control for Skid-Steered Duct-Cleaning Mobile Platforms
Abstract
:1. Introduction
2. Design of the Duct Cleaning Robot
2.1. A Mobile Duct-Cleaning Platform
2.2. Modeling of the Skid-Steered Platform
2.3. Estimating ICR with a Wheel Slippage Model
2.4. Modeling of the Interactive Forces
3. Trajectory-Tracking Control
4. Results
4.1. Numerical Analysis
4.2. Experimental Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jeong, W. Performance Analysis of a Mobile Duct-cleaning Robot. Int. J. Adv. Appl. 2014, 7, 26–32. [Google Scholar]
- Chwa, D. Sliding-Mode Tracking Control of Nonholonomic Wheeled Mobile Robots in Polar Coordinates. IEEE Trans. Control Syst. Technol. 2004, 12, 637–644. [Google Scholar] [CrossRef]
- Caracciolo, L. Trajectory-tracking Control of a Four-Wheel Differentially Driven Mobile Robot. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Detroit, MI, USA, 10–15 May 1999; pp. 2632–2638. [Google Scholar]
- Yi, J.; Song, D.; Zhang, J.; Goodwin, Z. Adaptive trajectory-tracking control of skid-steered mobile robots. In Proceedings of the IEEE International Conference on Robotics and Automation(ICRA), Rome, Italy, 10–14 April 2007; pp. 2605–2610. [Google Scholar]
- Piltan, F.; Sulaiman, N.; Soltani, S.; Marhaban, M.H.; Ramli, R. An Adaptive sliding surface slope adjustment in PD Sliding Mode Fuzzy Control for Robot Manipulator. Int. J. Control Autom. 2011, 4, 65–76. [Google Scholar]
- De Wit, C.C.; Khennouf, H.; Samson, C.; Sordalen, O.J. Nonlinear control design for mobile robots. In Recent Trends in Mobile Robots; Zheng, Y.F., Ed.; World Scientific: Singapore, 1993; pp. 121–156. [Google Scholar]
- Fierro, R.; Lewis, F.L. Control of a Nonholonomic Mobile Robot: Backstepping Kinematics into Dynamics. J. Robot. Syst. 1997, 14, 149–163. [Google Scholar] [CrossRef]
- Shin, J. Robust Adaptive Fuzzy Backstepping Control for Trajectory-tracking of an Electrically Driven Nonholonomic Mobile Robot with Uncertainties. J. Inst. Control Robot. Syst. 2012, 18, 902–911. [Google Scholar] [CrossRef]
- Jeon, S.; Jeong, W. The Stable Trajectory-tracking Control of a Skid-steered Mobile Platform with Dynamic Uncertainties. Int. J. Adv. Robot. Syst. 2015, 12, 1–9. [Google Scholar] [CrossRef]
- Yu, J.; Chang, J. A new adaptive backstepping control algorithm for motion control systems. In Proceedings of the 2000 IEEE International Conference on Control Applications, Anchorage, AK, USA, 25–27 September 2000; pp. 367–372. [Google Scholar]
- Benaskeur, A.; Desbiens, A. Backstepping-based adaptive PID control. IEE Proc. Control Theory Appl. 2002, 149, 54–59. [Google Scholar] [CrossRef]
- Kwan, C.M.; Lewis, F.L. Robust backstepping control of induction motors using neural networks. IEEE Trans. Neural Netw. 2000, 11, 1178–1187. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Collins, E.G. Analysis and Experimental Verification for Dynamic Modeling of A Skid-steered Wheeled Vehicle. IEEE Trans. Robot. 2010, 26, 340–353. [Google Scholar] [CrossRef]
- Martinez, J.L.; Mandow, A.; Morales, A.; Pedraza, S.; Garcia-Cerezo, A. Approximating Kinematics for Tracked Mobile Robots. Int. J. Robot. Res. 2005, 24, 867–878. [Google Scholar] [CrossRef]
- Yi, J.; Wang, H.; Zhang, J.; Song, D.; Jayasuria, S.; Liu, J. Kinematic Modeling and Analysis of Skid-Steered Mobile Robots With Applications to Low-Cost Inertial-Measurement-Unit-Based Motion Estimation. IEEE Trans. Robot. 2009, 25, 1087–1097. [Google Scholar] [Green Version]
- Wu, X.; Xu, M.; Wang, L. Differential Speed Steering Control for Four-Wheel Independent Driving Electric Vehicle. Int. J. Mater. Mech. Manuf. 2013, 1, 355–359. [Google Scholar]
- Le, A.T. Modeling and Control of Tracked Vehicles. Ph.D. Dissertation, University of Sydney, Sydney, Australia, 1999. [Google Scholar]
- Kozlowski, K.; Pazderski, D. Modeling and control of a 4-wheel skid-steering mobile robot. Int. J. Appl. Math. Comput. Sci. 2004, 14, 477–496. [Google Scholar]
- Kanayama, Y.; Kimura, Y.; Miyazaki, F.; Noguchi, T. A Stable Tracking Control Method for an Autonomous Mobile Robot. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Cincinnati, OH, USA, 13–18 May 1990; pp. 384–389. [Google Scholar]
- Khalil, H.K. Nonlinear Systems, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1996. [Google Scholar]
Description | Symbol | Values |
---|---|---|
Platform Size | L | 0.3 m |
CM to front wheel | a | 0.15 m |
Distance b/w left and right wheel | w | 0.23 m |
Wheel radius | r | 0.05 m |
Math moment of Inertia | I | 0.19 kg · m |
Overall mass | m | 7.823 kg |
Longitudinal Friction coefficient | 0.5 | |
Lateral friction coefficient | ||
Initial position of the platform | −0.02 m, 0.05 m | |
Max. torque of the traction motor | 0.95 Nm |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, W.; Jeon, S.; Jeong, D. Advanced Backstepping Trajectory Control for Skid-Steered Duct-Cleaning Mobile Platforms. Electronics 2019, 8, 401. https://doi.org/10.3390/electronics8040401
Jeong W, Jeon S, Jeong D. Advanced Backstepping Trajectory Control for Skid-Steered Duct-Cleaning Mobile Platforms. Electronics. 2019; 8(4):401. https://doi.org/10.3390/electronics8040401
Chicago/Turabian StyleJeong, Wootae, Seungwoo Jeon, and Dahae Jeong. 2019. "Advanced Backstepping Trajectory Control for Skid-Steered Duct-Cleaning Mobile Platforms" Electronics 8, no. 4: 401. https://doi.org/10.3390/electronics8040401
APA StyleJeong, W., Jeon, S., & Jeong, D. (2019). Advanced Backstepping Trajectory Control for Skid-Steered Duct-Cleaning Mobile Platforms. Electronics, 8(4), 401. https://doi.org/10.3390/electronics8040401