A Data-Driven Short-Term Forecasting Model for Offshore Wind Speed Prediction Based on Computational Intelligence
Abstract
:1. Introduction
1.1. Motivation and State-of-the-Art
1.2. Contribution of the Present Paper
2. Short-Term Wind Speed Forecasting Hybrid Model
2.1. Description
- -
- Case#1: wind speed
- -
- Case#2: wind speed and wind direction
- -
- Case#3: wind speed and temperature
- -
- Case#4: wind speed, wind direction and temperature
- -
- Case#5: wavelet components of wind speed.
2.2. Performance Assessment
3. Simulation Results
3.1. Wind Speed Forecasting
3.2. Comparison with Other Forecasting Models
4. Discussion and Concluding Remarks
- The proposed forecasting model can be used effectively for 1 min and 10 min ahead horizon wind speed predictions.
- The exogenous variables (i.e., wind speed direction and air temperature) decrease the prediction accuracy. The best results are obtained using the DWT.
- The highest errors are met on winter days and especially in instances with high wind speed.
- There is no correlation among the forecasting error and the wind direction.
- The hybrid model (combination of FFNN and ANFIS) leads to better forecasts in all examined data set cases.
- The proposed model outperforms the accuracy of other forecasting models that have been presented in the related literature.
Author Contributions
Funding
Conflicts of Interest
References
- WindEurope. Offshore Wind in Europe Key Trends and Statistics 2018. Available online: https://windeurope.org/wp-content/uploads/files/about-wind/statistics/WindEurope-Annual-Offshore-Statistics-2018.pdf (accessed on 27 March 2019).
- Snyder, B.; Kaiser, M.J. A comparison of offshore wind power development in Europe and the US: Patterns and drivers of development. Appl. Energy 2009, 86, 1845–1856. [Google Scholar] [CrossRef]
- Soman, S.S.; Zareipour, H.; Malik, O.; Mandal, P. A review of wind power and wind speed forecasting methods with different time horizons. In Proceedings of the 2010 North American Power Symposium, Arlington, TX, USA, 26–28 September 2010; pp. 1–8. [Google Scholar]
- Jung, J.; Broadwater, R.P. Current status and future advances for wind speed and power forecasting. Renew. Sustain. Energy Rev. 2014, 31, 762–777. [Google Scholar] [CrossRef]
- Okumus, I.; Dinler, A. Current status of wind energy forecasting and a hybrid method for hourly predictions. Energy Conves. Manag. 2016, 123, 362–371. [Google Scholar] [CrossRef]
- Lei, M.; Shiyan, L.; Chuanwen, J.; Hongling, L.; Ya, Z. A review on the forecasting of wind speed and generated power. Renew. Sustain. Energy Rev. 2009, 13, 915–920. [Google Scholar] [CrossRef]
- Chang, W.Y. A literature review of wind forecasting methods. J. Power Energy Eng. 2014, 2, 161–168. [Google Scholar] [CrossRef]
- Foley, A.M.; Leahy, P.G.; Marvuglia, A.; McKeogh, E.J. Current methods and advances in forecasting of wind power generation. Renew. Energy 2012, 37, 1–8. [Google Scholar] [CrossRef]
- Bhaskar, M.; Jain, A.; Srinath, N.V. Wind speed forecasting: Present status. In Proceedings of the 2010 International Conference on Power System Technology, Hangzhou, China, 24–28 October 2010; pp. 1–7. [Google Scholar]
- Murthal, D. Wind power forecasting: A survey. Int. J. Eng. Res. Gen. Sci. 2016, 4, 802–806. [Google Scholar]
- Tascikaraoglu, A.; Uzunoglu, M. A review of combined approaches for prediction of short-term wind speed and power. Renew. Sustain. Energy Rev. 2014, 34, 234–254. [Google Scholar] [CrossRef]
- Sfetsos, A. A novel approach for the forecasting of mean hourly wind speed time series. Renew. Energy 2002, 27, 163–174. [Google Scholar] [CrossRef]
- Başaran, Ü.; Filik, T. Wind speed prediction using artificial neural networks based on multiple local measurements in Eskisehir. Energy Procedia 2017, 107, 264–269. [Google Scholar]
- More, A.; Deo, M.C. Forecasting Wind with Neural Networks. Mar. Struct. 2003, 16, 35–49. [Google Scholar] [CrossRef]
- Li, G.; Shi, J. On comparing three artificial neural networks for wind speed forecasting. Appl. Energy 2010, 87, 2313–2320. [Google Scholar] [CrossRef]
- Zeng, J.W.; Qiao, W. Support vector machine-based short-term wind power forecasting. In Proceedings of the 2011 IEEE/PES Power Systems Conference and Exposition, Phoenix, AZ, USA, 20–23 March 2011; pp. 1–8. [Google Scholar]
- Zhou, J.Y.; Shi, J.; Li, G. Fine tuning support vector machines for short-term wind speed forecasting. Energy Convers. Manag. 2011, 52, 1990–1998. [Google Scholar] [CrossRef]
- Fazelpour, F.; Tarashkar, N.; Rosen, M.A. Short-term wind speed forecasting using artificial neural networks for Tehran. Iran. Int. J. Energy Environ. Eng. 2016, 7, 377–390. [Google Scholar] [CrossRef]
- Fortuna, L.; Guariso, G.; Nunnari, S. One day ahead prediction of wind speed class by statistical models. Int. J. Renew. Energy Res. 2016, 6, 1137–1145. [Google Scholar]
- Fortuna, L.; Nunnari, S.; Guariso, G. Fractal order evidences in wind speed time series. In Proceedings of the 2014 International Conference on Fractional Differentiation and Its Applications, Catania, Italy, 23–25 June 2014; pp. 1–6. [Google Scholar]
- Mallat, S. A theory for multiresolution signal decomposition-the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef]
- Amjady, N.; Keynia, F. Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm. Energy 2009, 34, 46–57. [Google Scholar] [CrossRef]
- Jang, J.S.R. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Graupe, P. Principles of Artificial Neural Networks, 2nd ed.; World Scientific: Singapore, 2007. [Google Scholar]
- Levenberg, K. A method for the solution of certain non-linear problems in least squares. Q. J. Appl. Math. 1944, 2, 164–168. [Google Scholar] [CrossRef]
- Michailides, C.; Loukogeorgaki, E.; Angelides, D.C. Monitoring the response of connected moored floating modules. In Proceedings of the Twenty-third International Offshore and Polar Engineering, Anchorage, AK, USA, 30 June–5 July 2013; pp. 869–876, ISBN 978-1-880653-99–9. [Google Scholar]
- Abdel-Aal, R.E.; Elhadidy, M.A.; Shaahid, S.M. Modeling and forecasting the mean hourly wind speed time series using GMDH-based abductive networks. Renew. Energy 2009, 34, 1686–1699. [Google Scholar] [CrossRef]
- Kumar, G.; Malik, H. Generalized regression neural network based wind speed prediction model for western region of India. Procedia Comput. Sci. 2016, 93, 26–32. [Google Scholar] [CrossRef]
- Troncoso, A.; Salcedo-Sanz, S.; Casanova-Mateo, C.; Riquelme, J.C.; Prieto, L. Local models-based regression trees for very short-term wind speed prediction. Renew. Energy 2015, 81, 589–598. [Google Scholar] [CrossRef]
- Sun, G.; Chen, Y.; Wei, Z.; Li, X.; Cheung, K.W. Day-ahead wind speed forecasting using relevance vector machine. J. Appl. Math. 2014, 2014, 1–6. [Google Scholar] [CrossRef]
- Botha, N.; van der Walt, C.M. Forecasting wind speed using support vector regression and feature selection. In Proceedings of the 2017 Pattern Recognition Association of South Africa and Robotics and Mechatronics, Bloemfontein, South Africa, 29 November–1 December 2017; pp. 181–186. [Google Scholar]
MAE | RMSE | MARNE (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
FFNN | ANFIS | FFNN-ANFIS | FFNN | ANFIS | FFNN-ANFIS | FFNN | ANFIS | FFNN-ANFIS | |
Case#1 | 0.3683 | 0.3675 | 0.3673 | 0.5576 | 0.5578 | 0.5563 | 2.3365 | 2.3311 | 2.3298 |
Case#2 | 0.3676 | 0.3682 | 0.3664 | 0.7510 | 0.5592 | 0.5551 | 2.5952 | 2.3356 | 2.3242 |
Case#3 | 0.4123 | 0.4443 | 0.3887 | 0.7237 | 0.9163 | 0.6435 | 2.6153 | 2.8185 | 2.4658 |
Case#4 | 0.4406 | 0.4210 | 0.4091 | 0.9206 | 0.8044 | 0.7511 | 2.7947 | 2.6703 | 2.5952 |
Case#5 | 0.1021 | 0.1324 | 0.0812 | 0.1528 | 0.2052 | 0.1301 | 0.6477 | 0.8403 | 0.5601 |
MAE | RMSE | MARNE (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
FFNN | ANFIS | FFNN-ANFIS | FFNN | ANFIS | FFNN-ANFIS | FFNN | ANFIS | FFNN-ANFIS | |
Case#1 | 0.4316 | 0.4296 | 0.4287 | 0.6258 | 0.6265 | 0.6240 | 4.2280 | 4.2088 | 4.2008 |
Case#2 | 0.4323 | 0.4295 | 0.4292 | 0.6253 | 0.6263 | 0.6239 | 4.2353 | 4.2077 | 4.2054 |
Case#3 | 0.4706 | 0.4985 | 0.4605 | 0.7569 | 0.9373 | 0.6851 | 4.6104 | 4.8841 | 4.5115 |
Case#4 | 0.4654 | 0.4936 | 0.4528 | 0.7155 | 0.8719 | 0.6689 | 4.5594 | 4.8363 | 4.4367 |
Case#5 | 0.1227 | 0.1572 | 0.1101 | 0.1693 | 0.2226 | 0.1556 | 1.077 | 1.5409 | 0.9967 |
MAE | RMSE | MARNE (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
GMDHNN | GRNN | RTs | GMDHNN | GRNN | RTs | GMDHNN | GRNN | RTs | |
Case#1 | 0.3688 | 0.3846 | 0.4432 | 0.5689 | 0.5721 | 0.6331 | 2.3411 | 2.3869 | 3.1256 |
Case#2 | 0.3701 | 0.3910 | 0.4509 | 0.7051 | 0.7644 | 0.8109 | 2.4578 | 2.4771 | 3.2672 |
Case#3 | 0.3698 | 0.4256 | 0.4781 | 0.7189 | 0.7367 | 0.7992 | 2.5871 | 2.6225 | 3.4155 |
Case#4 | 0.3944 | 0.4201 | 0.4541 | 0.8902 | 0.9012 | 1.1091 | 2.7112 | 2.9904 | 3.6203 |
Case#5 | 0.1094 | 0.1388 | 0.1692 | 0.1481 | 0.1556 | 0.2012 | 0.6289 | 0.6552 | 0.7154 |
MAE | RMSE | MARNE (%) | ||||
---|---|---|---|---|---|---|
RVM | SVR | RVM | SVR | RVM | SVR | |
Case#1 | 0.3721 | 0.3704 | 0.5614 | 0.5377 | 2.3482 | 2.3345 |
Case#2 | 0.3933 | 0.3865 | 0.7597 | 0.7029 | 2.4754 | 2.3419 |
Case#3 | 0.3885 | 0.3893 | 0.7408 | 0.6911 | 2.6172 | 2.5678 |
Case#4 | 0.3821 | 0.3783 | 0.8928 | 0.8709 | 2.9232 | 2.6213 |
Case#5 | 0.1277 | 0.1178 | 0.1542 | 0.1421 | 0.6524 | 0.5772 |
MAE | RMSE | MARNE (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
GMDHNN | GRNN | RTs | GMDHNN | GRNN | RTs | GMDHNN | GRNN | RTs | |
Case#1 | 0.4292 | 0.4525 | 0.5898 | 0.6258 | 0.6553 | 0.8093 | 4.2051 | 4.4326 | 5.7812 |
Case#2 | 0.4302 | 0.5597 | 0.5901 | 0.6272 | 0.6715 | 0.8095 | 4.2149 | 4.5031 | 5.7812 |
Case#3 | 0.4704 | 0.6927 | 0.6157 | 0.6862 | 0.7342 | 0.8461 | 4.6334 | 4.7862 | 6.0319 |
Case#4 | 0.4601 | 0.6056 | 0.6108 | 0.6715 | 0.6989 | 0.8012 | 4.5130 | 4.6902 | 5.7568 |
Case#5 | 0.1238 | 0.1624 | 0.1799 | 0.1601 | 0.1833 | 0.2109 | 1.2671 | 1.4884 | 1.6117 |
MAE | RMSE | MARNE (%) | ||||
---|---|---|---|---|---|---|
RVM | SVR | RVM | SVR | RVM | SVR | |
Case#1 | 0.4342 | 0.4298 | 0.6359 | 0.6268 | 4.2541 | 4.2206 |
Case#2 | 0.4351 | 0.4307 | 0.6440 | 0.6268 | 4.2630 | 4.2198 |
Case#3 | 0.5370 | 0.4681 | 0.8649 | 0.7529 | 5.2605 | 4.5365 |
Case#4 | 0.4988 | 0.4644 | 0.7898 | 0.7459 | 5.1133 | 4.5301 |
Case#5 | 0.1424 | 0.1308 | 0.2037 | 0.1654 | 1.5893 | 1.1276 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panapakidis, I.P.; Michailides, C.; Angelides, D.C. A Data-Driven Short-Term Forecasting Model for Offshore Wind Speed Prediction Based on Computational Intelligence. Electronics 2019, 8, 420. https://doi.org/10.3390/electronics8040420
Panapakidis IP, Michailides C, Angelides DC. A Data-Driven Short-Term Forecasting Model for Offshore Wind Speed Prediction Based on Computational Intelligence. Electronics. 2019; 8(4):420. https://doi.org/10.3390/electronics8040420
Chicago/Turabian StylePanapakidis, Ioannis P., Constantine Michailides, and Demos C. Angelides. 2019. "A Data-Driven Short-Term Forecasting Model for Offshore Wind Speed Prediction Based on Computational Intelligence" Electronics 8, no. 4: 420. https://doi.org/10.3390/electronics8040420
APA StylePanapakidis, I. P., Michailides, C., & Angelides, D. C. (2019). A Data-Driven Short-Term Forecasting Model for Offshore Wind Speed Prediction Based on Computational Intelligence. Electronics, 8(4), 420. https://doi.org/10.3390/electronics8040420