3D Spatial Characteristics of C-V2X Communication Interference
Abstract
:1. Introduction
2. 3D GIDM and Interference APD
2.1. 3D GIDM
- (1)
- the closer the interference signal to the receiving end, the stronger the influence, so the incoming interference power is assumed to obey the Gaussian distribution centered on the receiver in the 3D spatial distance [21];
- (2)
2.2. Interference APD
3. Spatial Statistics of Interference
3.1. 3D Shape Factors
3.2. Interference Fading Rate Variance
3.3. Interference Level Crossing Rate and Average Fade Duration
3.4. Interference Spatial Correlation and Coherence Distance
4. Spatial Statistics of SIR
4.1. Probability Density Function of SIR
4.2. Spatial Correlation Function of SIR
5. Results and Discussions
5.1. Interference APD
5.2. Interference Fading Rate Variance
5.3. Interference LCR
5.4. Interference SCF
5.5. PDF of SIR
5.6. SCF of SIR
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Du, D.; Zeng, X.; Jian, X.; Yang, F.; Sun, M. 3-D V2V MIMO Channel Modeling in Different Roadway Scenarios with Moving Scatterers. Prog. Electromagn. Res. 2018, 64, 43–54. [Google Scholar]
- Taranetz, M.; Rupp, M. A circular interference model for heterogeneous cellular networks. IEEE Trans. Wirel. Commun. 2016, 15, 1432–1444. [Google Scholar] [CrossRef]
- Zhang, T.; Lu, A.; Chen, Y.; Chai, K.K. Aggregate interference statistical modeling and user outage analysis of heterogeneous cellular networks. In Proceedings of the IEEE International Conference on Communications (ICC), Sydney, Australia, 10–14 June 2014; pp. 1260–1265. [Google Scholar]
- Giovanidis, A.; Corrales, L.D.A.; Decreusefondf, L. Analyzing interference from static cellular cooperation using the nearest neighbour model. In Proceedings of the 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), Mumbai, India, 25–29 May 2015; pp. 576–583. [Google Scholar]
- Koufos, K.; Jantti, R. Interference Modelling Using Hierarchical Spatial Clustering of Terrain and User Density Map. In Proceedings of the IEEE 79th Vehicular Technology Conference (VTC Spring), Seoul, Korea, 18–21 May 2014; pp. 1–5. [Google Scholar]
- Cong, Y.; Zhou, X.; Kennedy, R.A. Interference prediction in mobile ad hoc networks with a general mobility model. IEEE Trans. Wirel. Commun. 2015, 14, 4277–4290. [Google Scholar] [CrossRef]
- Chun, Y.J.; Hasna, M.O.; Ghrayeb, A. Modeling and analysis of HetNet interference using Poisson Cluster Processes. In Proceedings of the IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), Washington, DC, USA, 2–5 September 2014; pp. 681–686. [Google Scholar]
- Torrisi, G.L.; Leonardi, E. Simulating the tail of the interference in a Poisson network model. IEEE Trans. Inform. Theory 2013, 59, 1773–1787. [Google Scholar] [CrossRef]
- Huan, C.; Liu, C.; Zheng, W.; Fu, Y. Average received interference power analysis of D2D communication in the cellular network. In Proceedings of the IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), Nanjing, China, 16–19 October 2016; pp. 1–4. [Google Scholar]
- Zhang, Y.; Zheng, J.; Lu, P.S.; Chen, S. Interference Graph Construction for Cellular D2D Communications. IEEE Trans. Veh. Technol. 2016, 66, 3293–3305. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Zhang, H.; Li, W. Mathematical characteristics analysis of uplink interference region in D2D communications underlaying cellular networks. In Proceedings of the IEEE Seventh International Conference on Ubiquitous and Future Networks (ICUFN), Sapporo, Japan, 7–10 July 2015; pp. 557–561. [Google Scholar]
- Lu, H.; Wang, Y.; Chen, Y.; Liu, K.J. Interference model and analysis on device-to-device cellular coexist networks. In Proceedings of the IEEE Global Conference on Signal and Information Processing (GlobalSIP), Orlando, FL, USA, 14–16 December 2015; pp. 1086–1090. [Google Scholar]
- Tchouankem, H.; Lorenzen, T. Measurement-based evaluation of interference in Vehicular Ad-Hoc Networks at urban intersections. In Proceedings of the IEEE International Conference on Communication Workshop (ICCW), London, UK, 8–12 June 2015; pp. 2381–2386. [Google Scholar]
- Bastani, S.; Landfeldt, B. The Effect of Hidden Terminal Interference on Safety-Critical Traffic in Vehicular Ad Hoc Networks. In Proceedings of the 6th ACM Symposium on Development and Analysis of Intelligent Vehicular Networks and Applications, Valletta, Malta, 13–17 November 2016; pp. 75–82. [Google Scholar]
- Kimura, T.; Saito, H. Theoretical Interference Analysis of Inter-vehicular Communication at Intersection with Power Control. In Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, Valletta, Malta, 13–17 November 2016; pp. 3–10. [Google Scholar]
- Bithas, P.S.; Efthymoglou, G.P.; Kanatas, A.G. Intervehicular communication systems under co-channel interference and outdated channel estimates. In Proceedings of the IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 23–27 May 2016; pp. 1–6. [Google Scholar]
- Tengstrand, S.O.; Fors, K.; Stenumgaard, P.; Wiklundh, K. Jamming and interference vulnerability of IEEE 802.11 p. In Proceedings of the IEEE International Symposium on Electromagnetic Compatibility (EMC Europe), Gothenburg, Sweden, 1–4 September 2014; pp. 533–538. [Google Scholar]
- Fuxjaeger, P.; Ruehrup, S. Validation of the NS-3 Interference Model for IEEE802. 11 Networks. In Proceedings of the IEEE 8th IFIP Wireless and Mobile Networking Conference (WMNC), Munich, Germany, 5–7 October 2015; pp. 216–222. [Google Scholar]
- Chen, Y.; Mucchi, L.; Wang, R. Angular spectrum and second order statistics of interference in wireless networks. In Proceedings of the IEEE International Conference on Communication, Networks and Satellite (COMNETSAT), Yogyakarta, Indonesia, 3–4 December 2013; pp. 41–45. [Google Scholar]
- Chen, Y.; Mucchi, L.; Wang, R.; Huang, K. Modeling Network Interference in the Angular Domain: Interference Azimuth Spectrum. IEEE Trans. Commun. 2014, 62, 2107–2120. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Zhang, Z.; Dang, J.; Wu, L. A Novel 3D Massive MIMO Channel Model for Vehicle-to-Vehicle Communication Environments. IEEE Trans. Commun. 2018, 66, 79–90. [Google Scholar] [CrossRef]
- Nawaz, S.J.; Qureshi, B.H.; Khan, N.M. A Generalized 3-D Scattering Model for a Macrocell Environment with a Directional Antenna at the BS. IEEE Trans. Veh. Technol. 2010, 59, 3193–3204. [Google Scholar] [CrossRef]
- Bell, W.W. Special Functions for Scientists and Engineers; Dover Publications: New York, NY, USA, 2004. [Google Scholar]
- Valchev, D.G.; Brady, D. Three-dimensional multipath shape factors for spatial modeling of wireless channels. IEEE Trans. Wirel. Commun. 2009, 8, 5542–5551. [Google Scholar] [CrossRef]
- Durgin, G.D.; Rappaport, T.S. Theory of multipath shape factors for small-scale fading wireless channels. IEEE Trans. Antennas Propag. 2000, 48, 682–693. [Google Scholar] [CrossRef]
- Nakagami, M. The m-distribution-A general formula of intensity distribution of rapid fading. In Statistical Method of Radio Propagation; Pergamon: Oxford, UK, 1960; pp. 3–36. [Google Scholar]
- Babich, F.; Lombardi, G. General Nakagami approximation for sum of Ricean interferers. Electron. Lett. 1998, 34, 23–24. [Google Scholar] [CrossRef]
- Papoulis, A.; Pillai, S.U. Probability, Random Variables, and Stochastic Processes; Tata McGraw-Hill Education: New York, NY, USA, 2002. [Google Scholar]
- Karagiannidis, G.; Georgopoulos, C.; Kotsopoulos, S. Outage probability analysis for a Nakagami signal in L Nakagami interferers. Eur. Trans. Telecommun. 2001, 12, 145–150. [Google Scholar] [CrossRef]
- Dubey, S.D. Compound gamma, beta and F distributions. Metrika 1970, 16, 27–31. [Google Scholar] [CrossRef]
- Du, D.; Zeng, X.; Jian, X.; Yu, F.; Miao, L. Analysis of Three-Dimensional Spatial Selectivity for Rician Channel. Radioengineering 2018, 27, 249–255. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, D.; Jian, X.; Wu, X.; Tan, Y.; Zeng, X.; Huang, S.; Li, Y. 3D Spatial Characteristics of C-V2X Communication Interference. Electronics 2019, 8, 718. https://doi.org/10.3390/electronics8060718
Du D, Jian X, Wu X, Tan Y, Zeng X, Huang S, Li Y. 3D Spatial Characteristics of C-V2X Communication Interference. Electronics. 2019; 8(6):718. https://doi.org/10.3390/electronics8060718
Chicago/Turabian StyleDu, Derong, Xin Jian, Xuegang Wu, Yong Tan, Xiaoping Zeng, Shijian Huang, and Yadong Li. 2019. "3D Spatial Characteristics of C-V2X Communication Interference" Electronics 8, no. 6: 718. https://doi.org/10.3390/electronics8060718
APA StyleDu, D., Jian, X., Wu, X., Tan, Y., Zeng, X., Huang, S., & Li, Y. (2019). 3D Spatial Characteristics of C-V2X Communication Interference. Electronics, 8(6), 718. https://doi.org/10.3390/electronics8060718