Signal Processing and Analysis of Electrical Circuit
1. Introduction
2. The Present Special Issue
3. Concluding Remarks
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Głowacz, A. Acoustic-based fault diagnosis of commutator motor. Electronics 2018, 7, 299. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Chen, X.; Yu, J.; Yang, X. A Fusion Frequency Feature Extraction Method for Underwater Acoustic Signal Based on Variational Mode Decomposition. Duffing Chaotic Oscillator and a Kind of Permutation Entropy. Electronics 2019, 8, 61. [Google Scholar] [CrossRef] [Green Version]
- Xiang, J.; Ye, P.; Wang, L.; He, M. A Novel Image-Restoration Method Based on High-Order Total Variation Regularization Term. Electronics 2019, 8, 867. [Google Scholar] [CrossRef] [Green Version]
- Rigakis, I.; Potamitis, I.; Tatlas, N.A.; Livadaras, I.; Ntalampiras, S. A Multispectral Backscattered Light Recorder of Insects’ Wingbeats. Electronics 2019, 8, 277. [Google Scholar] [CrossRef] [Green Version]
- Ju, H.; Lee, M. A 13-bit 3-MS/s Asynchronous SAR ADC with a Passive Resistor Based Loop Delay Circuit. Electronics 2019, 8, 262. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.; Ke, J.; Wang, T.; Deng, Z. Development of a Miniaturized Frequency Standard Comparator Based on FPGA. Electronics 2019, 8, 123. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Kim, G.S.; Oh, K.I.; Baek, D. Fully Integrated Low-Ripple Switched-Capacitor DC–DC Converter with Parallel Low-Dropout Regulator. Electronics 2019, 8, 98. [Google Scholar] [CrossRef] [Green Version]
- Mejia-Barron, A.; de Santiago-Perez, J.J.; Granados-Lieberman, D.; Amezquita-Sanchez, J.P.; Valtierra-Rodriguez, M. Shannon Entropy Index and a Fuzzy Logic System for the Assessment of Stator Winding Short-Circuit Faults in Induction Motors. Electronics 2019, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- De Marcellis, A.; Reig, C.; Cubells-Beltran, M.D. A Capacitance-to-Time Converter-Based Electronic Interface for Differential Capacitive Sensors. Electronics 2019, 8, 80. [Google Scholar] [CrossRef] [Green Version]
- Ramkaj, A.; Strackx, M.; Steyaert, M.; Tavernier, F. An 11 GHz Dual-Sided Self-Calibrating Dynamic Comparator in 28 nm CMOS. Electronics 2019, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.P.; Xu, X.J.; Sheng, C.X.; Yuan, C.Q.; Li, Z.X. Intelligent wear mode identification system for marine diesel engines based on multi-level belief rule base methodology. Meas. Sci. Technol. 2018, 29. [Google Scholar] [CrossRef]
- Stief, A.; Ottewill, J.R.; Orkisz, M.; Baranowski, J. Two Stage Data Fusion of Acoustic. Electric and Vibration Signals for Diagnosing Faults in Induction Motors. Elektron. Elektrotechnika 2017, 23, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Naikan, V.N.A. Detection of half broken rotor bar fault in VFD driven induction motor drive using motor square current MUSIC analysis. Mech. Syst. Signal Process. 2018, 110, 333–348. [Google Scholar] [CrossRef]
- Zhang, C.; Peng, Z.X.; Chen, S.; Li, Z.X.; Wang, J.G. A gearbox fault diagnosis method based on frequency-modulated empirical mode decomposition and support vector machine. Proc. Inst. Mech. Eng. Part C 2018, 232, 369–380. [Google Scholar] [CrossRef]
- Michalak, M.; Sikora, B.; Sobczyk, J. Diagnostic Model for Longwall Conveyor Engines. In Man-Machine Interactions 4, ICMMI 2015, Book Series: Advances in Intelligent Systems and Computing, Proceedings of the Man-Machine Interactions 4—4th International Conference on Man-Machine Interactions, ICMMI 2015, Kocierz Pass, Poland, 6–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2016; Volume 391, pp. 437–448. [Google Scholar] [CrossRef]
- Glowacz, A.; Glowacz, W. Vibration-Based Fault Diagnosis of Commutator Motor. Shock Vib. 2018, 7460419. [Google Scholar] [CrossRef]
- Glowacz, A.; Glowacz, Z. Recognition of rotor damages in a DC motor using acoustic signals. Bull. Pol. Acad. Sci. Tech. Sci. 2017, 65, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Glowacz, A. Recognition of acoustic signals of induction motor using FFT. SMOFS-10 and LSVM. Eksploat. Niezawodn. 2015, 17, 569–574. [Google Scholar] [CrossRef]
- Legutko, S. Development Trends in Machines Operation Maintenance. Eksploat. Niezawodn. 2009, 2, 8–16. [Google Scholar]
- Hreha, P.; Radvanska, A.; Knapcikova, L.; Krolczyk, G.M.; Legutko, S.; Krolczyk, J.B.; Hloch, S.; Monka, P. Roughness Parameters Calculation by Means of On-Line Vibration Monitoring Emerging from AWJ Interaction With Material. Metrol. Meas. Syst. 2015, 22, 315–326. [Google Scholar] [CrossRef]
- Liu, M.K.; Weng, P.Y. Fault Diagnosis of Ball Bearing Elements: A Generic Procedure based on Time-Frequency Analysis. Meas. Sci. Rev. 2019, 19, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhang, Y.G. New Developments in Fault Analysis Based on Dynamical Perspective. IETE J. Res. 2016, 62, 500–506. [Google Scholar] [CrossRef]
- Krolczyk, G.M.; Krolczyk, J.B.; Legutko, S.; Hunjet, A. Effect of the disc processing technology on the vibration level of the chipper during operations. Teh. Vjesn. 2014, 21, 447–450. [Google Scholar]
- Irfan, M.; Saad, N.; Ibrahim, R.; Asirvadam, V.S. Condition monitoring of induction motors via instantaneous power analysis. J. Intell. Manuf. 2017, 28, 1259–1267. [Google Scholar] [CrossRef]
- Pandiyan, V.; Caesarendra, W.; Tjahjowidodo, T.; Tan, H.H. In-process tool condition monitoring in compliant abrasive belt grinding process using support vector machine and genetic algorithm. J. Manuf. Process. 2018, 31, 199–213. [Google Scholar] [CrossRef]
- Zmarzly, D.; Boczar, T.; Fracz, P.; Borucki, S. High Voltage Power Transformer Diagnostics using Vibroacoustic Method. In Proceedings of the 2014 IEEE International Power Modulator and High Voltage Conference (IPMHVC), Santa Fe, NM, USA, 1–5 June 2014; pp. 561–564. [Google Scholar]
- Kowalczyk, M.; Przewlocka, D.; Kryjak, T. Real-time implementation of contextual image processing operations for 4K video stream in Zynq UltraScale plus MPSoC. In Proceedings of the 2018 Conference on Design and Architectures for Signal and Image Processing (DASIP), 9–12 October 2018; pp. 37–42. [Google Scholar]
- Kryjak, T.; Komorkiewicz, M.; Gorgon, M. Real-time Implementation of Foreground Object Detection From a Moving Camera Using the ViBE Algorithm. Comput. Sci. Inf. Syst. 2014, 11, 1617–1637. [Google Scholar] [CrossRef]
- Kurtasz, P.; Boczar, T.; Witkowski, P.; Lorenc, M. The application of the multicomparative algorithm for classifying acoustic signals coming from partial discharges. Prz. Elektrotech. 2010, 86, 125–127. [Google Scholar]
- Boczar, T.; Lorenc, M. The application of the descriptive statistics for recognizing electrical discharge forms registered by the acoustic emission method. Prz. Elektrotech. 2008, 84, 6–9. [Google Scholar]
- Jablonski, M.; Tylek, P.; Walczyk, J.; Tadeusiewicz, R.; Pilat, A. Colour-Based Binary Discrimination of Scarified Quercus Robur Acorns under Varying Illumination. Sensors 2016, 16, 1319. [Google Scholar] [CrossRef] [Green Version]
- Jaworek-Korjakowska, J.; Kleczek, P.; Tadeusiewicz, R. Detection and Classification of Pigment Network in Dermoscopic Color Images as One of the 7-Point Checklist Criteria. In Recent Developments and Achievements in Biocybern. Biomed. Eng. 2018, Book Series: Advances in Intelligent Systems and Computing, Proceedings of the 20th Polish Conference on Biocybernetics and Biomedical Engineering, Kraków, Poland, 20–22 September 2017; Springer: Berlin/Heidelberg, Germany, 2018; Volume 647, pp. 174–181. [Google Scholar] [CrossRef]
- Glowacz, A.; Glowacz, Z. Recognition of images of finger skin with application of histogram, image filtration and K-NN classifier. Biocybern. Biomed. Eng. 2016, 36, 95–101. [Google Scholar] [CrossRef]
- Kantoch, E. Recognition of Sedentary Behavior by Machine Learning Analysis of Wearable Sensors during Activities of Daily Living for Telemedical Assessment of Cardiovascular Risk. Sensors 2018, 18, 3219. [Google Scholar] [CrossRef] [Green Version]
- Proniewska, K. Data mining with Random Forests as a methodology for biomedical signal classification. Bio-Algorithms Med-Syst. 2016, 12, 89–92. [Google Scholar] [CrossRef]
- Proniewska, K.; Malinowski, K.; Pociask, E.; Proniewski, B. Classification of Sleep Disordered Breathing in the Evaluation of Acoustic Sound in Correlation with the ECG Signal. In Proceedings of the 2014 Computing in Cardiology Conference 2014 (CinC), Cambridge, MA, USA, 7–10 September 2014; Volume 41, pp. 153–156. [Google Scholar]
- Jiang, Y.; Law, M.K.; Chen, Z.Y.; Mak, P.I.; Martins, R.P. Algebraic Series-Parallel-Based Switched-Capacitor DC-DC Boost Converter With Wide Input Voltage Range and Enhanced Power Density. IEEE J. Solid-State Circuits 2019, 54, 3118–3134. [Google Scholar] [CrossRef]
- Mohey, A.M.; Ibrahim, S.A.; Hafez, I.M.; Kim, H. Design Optimization for Low-Power Reconfigurable Switched-Capacitor DC-DC Voltage Converter. IEEE Trans. Circuits Syst. I-Regul. Pap. 2019, 66, 4079–4092. [Google Scholar] [CrossRef]
- Xie, F.Y.; Wu, B.C.; Liu, T.T. A Ripple Reduction Method for Switched-Capacitor DC-DC Voltage Converter Using Fully Digital Resistance Modulation. IEEE Trans. Circuits Syst. I-Regul. Pap. 2019, 66, 3631–3641. [Google Scholar] [CrossRef]
- Zeng, T.; Wu, Z.; He, L.Z. Bridge modular switched-capacitor DC-DC converter with soft switching operation and multilevel voltage-gain range. IEEJ Trans. Electr. Electron. Eng. 2019, 14, 1399–1408. [Google Scholar] [CrossRef]
- Kumar, M.; Ramesh, S. Design and Implementation of Three-Winding Coupled Inductor and Switched Capacitor-Based DC-DC Converter Fed PV-TDVR. J. Circuits Syst. Comput. 2019, 28. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glowacz, A.; Daviu, J.A.A. Signal Processing and Analysis of Electrical Circuit. Electronics 2020, 9, 17. https://doi.org/10.3390/electronics9010017
Glowacz A, Daviu JAA. Signal Processing and Analysis of Electrical Circuit. Electronics. 2020; 9(1):17. https://doi.org/10.3390/electronics9010017
Chicago/Turabian StyleGlowacz, Adam, and Jose Alfonso Antonino Daviu. 2020. "Signal Processing and Analysis of Electrical Circuit" Electronics 9, no. 1: 17. https://doi.org/10.3390/electronics9010017
APA StyleGlowacz, A., & Daviu, J. A. A. (2020). Signal Processing and Analysis of Electrical Circuit. Electronics, 9(1), 17. https://doi.org/10.3390/electronics9010017