Evolutionary Machine Learning for Optimal Polar-Space Fuzzy Control of Cyber-Physical Mecanum Vehicles
Abstract
:1. Introduction
2. Polar-Space Modeling and Tracking Control of Mecanum Mobile Robots
2.1. Polar-Space Kinematics Analysis
2.2. Polar-Space Tracking Control
3. Polar-Space FPA-Fuzzy EML Control of Mecanum Vehicles
3.1. Flower Pollination Algorithm
3.2. FPA-Fuzzy EML Control
3.3. Application to EML Control of Polar-Space Mecanum Vehicles
3.4. Embedded Cyber-Physical Mecanum Robotic System
4. Experimental Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, B.; Zhong, L.; Zhang, X.; Shu, H.; Yu, T.; Li, H.; Jiang, L.; Sun, L. Novel bio-inspired memetic salp swarm algorithm and application to MPPT for PV systems considering partial shading condition. J. Clean. Prod. 2019, 215, 1203–1222. [Google Scholar] [CrossRef]
- Machová, K.; Mikula, M.; Gao, X.; Mach, M. Lexicon-Based Sentiment Analysis Using Particle Swarm Optimization. Electronics 2020, 9, 1317. [Google Scholar] [CrossRef]
- Long, W.; Wu, T.; Cai, S.; Liang, X.; Jiao, J.; Xu, M. A Novel Grey Wolf Optimizer Algorithm with Refraction Learning. IEEE Access 2019, 7, 57805–57819. [Google Scholar] [CrossRef]
- Cheng, R.; Jin, Y.; Narukawa, K.; Sendhoff, B. A Multiobjective Evolutionary Algorithm Using Gaussian Process-Based Inverse Modeling. IEEE Trans. Evol. Comput. 2015, 19, 838–856. [Google Scholar] [CrossRef]
- Cecchetti, R.; De Paulis, F.; Olivieri, C.; Orlandi, A.; Buecker, M. Effective PCB Decoupling Optimization by Combining an Iterative Genetic Algorithm and Machine Learning. Electronics 2020, 9, 1243. [Google Scholar] [CrossRef]
- Huang, H.-C.; Lin, S.-K. A Hybrid Metaheuristic Embedded System for Intelligent Vehicles Using Hypermutated Firefly Algorithm Optimized Radial Basis Function Neural Network. IEEE Trans. Ind. Inform. 2019, 15, 1062–1069. [Google Scholar] [CrossRef]
- Yang, X.-S.; Karamanoglu, M.; He, X. Flower pollination algorithm: A novel approach for multiobjective optimization. Eng. Optim. 2013, 46, 1222–1237. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Basset, M.; Shawky, L.A. Flower pollination algorithm: A comprehensive review. Artif. Intell. Rev. 2019, 52, 2533–2557. [Google Scholar] [CrossRef]
- Yang, X.-S. Flower pollination algorithm for global optimization. In Lecture Notes in Computer Science, Proceedings of the Unconventional Computing and Natural Computation: 11th International Conference, UCNC 2012, Orléan, France, 3−7 September 2012; Springer: Berlin, Germany, 2012. [Google Scholar]
- Wang, R.; Zhou, Y. Flower Pollination Algorithm with Dimension by Dimension Improvement. Math. Probl. Eng. 2014, 2014, 1–9. [Google Scholar] [CrossRef]
- Sharawi, M.; Emary, E.; Saroit, I.A. Flower pollination optimization algorithm for wireless sensor network lifetime global optimization. Int. J. Soft Comput. Eng. 2014, 4, 54–59. [Google Scholar]
- Huang, C.H.; Wang, W.J.; Chiu, C.H. Design and implementation of fuzzy control on a two-wheel inverted pendulum. IEEE Trans. Ind. Electron. 2011, 58, 2988–3001. [Google Scholar] [CrossRef]
- Cao, J.; Li, P.; Liu, H. An interval fuzzy controller for vehicle active suspension systems. IEEE Trans. Intell. Transp. Syst. 2010, 11, 885–895. [Google Scholar] [CrossRef]
- Farrell, J.A.; Polycarpou, M.M. Adaptive Approximation Based Control: Unifying Neural, Fuzzy and Traditional Adaptive Approximation Approaches; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Chen, B.; Liu, X.P.; Ge, S.S.; Lin, C. Adaptive fuzzy control of a class of nonlinear systems by fuzzy approximation approach. IEEE Trans. Fuzzy Syst. 2012, 20, 1012–1021. [Google Scholar] [CrossRef]
- Wang, L.X. Adaptive Fuzzy Systems and Control: Design and Stability Analysis; PTR Prentice Hall: Englewood Cliffs, NJ, USA, 1994. [Google Scholar]
- Jinbao, H.; Shuai, G.; Yongyi, H.; Minglun, F. A fuzzy tension-controller based on genetic algorithm. IET Control Theory Appl. 2009, 26, 243–248. [Google Scholar]
- Castillo, O.; Valdes, F.; Melin, P. Hierarchical genetic algorithms for topology optimization in fuzzy control systems. Int. J. Gen. Syst. 2007, 36, 575–591. [Google Scholar] [CrossRef]
- Castillo, O.; Neyoy, H.; Soria, J.; Melin, P.; Valdez, F. A new approach for dynamic fuzzy logic parameter tuning in ant colony optimization and its application in fuzzy control of a mobile robot. Appl. Soft Comput. 2015, 28, 150–159. [Google Scholar] [CrossRef]
- Bakdi, A.; Hentout, A.; Boutami, H.; Maoudj, A.; Hachour, O.; Bouzouia, B. Optimal path planning and execution for mobile robots using genetic algorithm and adaptive fuzzy-logic control. Robot. Auton. Syst. 2017, 89, 95–109. [Google Scholar] [CrossRef]
- Wong, C.C.; Wang, H.Y.; Li, S.A. PSO-based motion fuzzy controller design for mobile robots. Int. J. Fuzzy Syst. 2008, 10, 284–292. [Google Scholar]
- Pan, Y.; Er, M.J. Enhanced Adaptive Fuzzy Control with Optimal Approximation Error Convergence. IEEE Trans. Fuzzy Syst. 2013, 21, 1123–1132. [Google Scholar] [CrossRef]
- Liu, X.; Deng, Q.-X.; Wang, Z. Design and FPGA Implementation of High-Speed, Fixed-Latency Serial Transceivers. IEEE Trans. Nucl. Sci. 2014, 61, 561–567. [Google Scholar] [CrossRef]
- Lu, S.J.; Siqueira, P.; Vijayendra, V.; Chandrikakutty, H.; Tessier, R. Real-Time Differential Signal Phase Estimation for Space-Based Systems using FPGAs. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 1192–1209. [Google Scholar] [CrossRef]
- Lee, C.-S.; Hsu, C.-C.; Lin, K.-E.; Chang, J.-H.; Lin, G.-H. A Project-Based Laboratory for Learning Embedded System Design with Industry Support. IEEE Trans. Educ. 2009, 53, 173–181. [Google Scholar] [CrossRef]
- Mori, J.Y.; Arias-Garcia, J.; Sánchez-Ferreira, C.; Muñoz, D.M.; Llanos, C.H.; Motta, J.M.S.T. An FPGA-Based Omnidirectional Vision Sensor for Motion Detection on Mobile Robots. Int. J. Reconfig. Comput. 2012, 2012, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Sutikno, T.; Idris, N.R.N.; Jidin, A.; Cirstea, M.N. An Improved FPGA Implementation of Direct Torque Control for Induction Machines. IEEE Trans. Ind. Inform. 2012, 9, 1280–1290. [Google Scholar] [CrossRef]
- Idkhajine, L.; Monmasson, E.; Maalouf, A. Fully FPGA-Based Sensorless Control for Synchronous AC Drive Using an Extended Kalman Filter. IEEE Trans. Ind. Electron. 2012, 59, 3908–3918. [Google Scholar] [CrossRef]
- Kim, J.; Woo, S.; Kim, J.; Do, J.; Kim, S.; Bae, S. Inertial navigation system for an automatic guided vehicle with Mecanum wheels. Int. J. Precis. Eng. Manuf. 2012, 13, 379–386. [Google Scholar] [CrossRef]
- Byun, K.-S.; Song, J.-B. Design and construction of continuous alternate wheels for an omnidirectional mobile robot. J. Robot. Syst. 2003, 20, 569–579. [Google Scholar] [CrossRef]
- Wang, Y. Motion Performance Analysis and Layout Selection for Motion System with Four Mecanum Wheels. Chin. J. Mech. Eng. 2009, 45, 307. [Google Scholar] [CrossRef]
- Chwa, D. Sliding-Mode Tracking Control of Nonholonomic Wheeled Mobile Robots in Polar Coordinates. IEEE Trans. Control. Syst. Technol. 2004, 12, 637–644. [Google Scholar] [CrossRef]
- Huang, H.-C. An Evolutionary Optimal Fuzzy System With Information Fusion of Heterogeneous Distributed Computing and Polar-Space Dynamic Model for Online Motion Control of Swedish Redundant Robots. IEEE Trans. Ind. Electron. 2016, 64, 1743–1750. [Google Scholar] [CrossRef]
- Park, K.; Chung, H.; Lee, J.G. Point stabilization of mobile robots via state-space exact feedback linearization. Robot. Comput. Manuf. 2000, 16, 353–363. [Google Scholar] [CrossRef]
- Lee, J.; Bagheri, B.; Kao, H.-A. A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett. 2015, 3, 18–23. [Google Scholar] [CrossRef]
- Sheng, Y.; Lin, T.; Chen, R.; Chen, B.; Ding, G.; Xialing, X.; Xie, C.; Liu, L. Electromagnetic torque analysis-based method for performance evaluation and optimisation of closed-loop CPS regarding small signal stability. IET Cyber-Phys. Syst. Theory Appl. 2018, 3, 187–193. [Google Scholar] [CrossRef]
- Pasqualetti, F.; Zhu, Q. Design and Operation of Secure Cyber-Physical Systems. IEEE Embed. Syst. Lett. 2014, 7, 3–6. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.-C.; Xu, J.-J. Evolutionary Machine Learning for Optimal Polar-Space Fuzzy Control of Cyber-Physical Mecanum Vehicles. Electronics 2020, 9, 1945. https://doi.org/10.3390/electronics9111945
Huang H-C, Xu J-J. Evolutionary Machine Learning for Optimal Polar-Space Fuzzy Control of Cyber-Physical Mecanum Vehicles. Electronics. 2020; 9(11):1945. https://doi.org/10.3390/electronics9111945
Chicago/Turabian StyleHuang, Hsu-Chih, and Jing-Jun Xu. 2020. "Evolutionary Machine Learning for Optimal Polar-Space Fuzzy Control of Cyber-Physical Mecanum Vehicles" Electronics 9, no. 11: 1945. https://doi.org/10.3390/electronics9111945
APA StyleHuang, H. -C., & Xu, J. -J. (2020). Evolutionary Machine Learning for Optimal Polar-Space Fuzzy Control of Cyber-Physical Mecanum Vehicles. Electronics, 9(11), 1945. https://doi.org/10.3390/electronics9111945