Wireless Sensors for Brain Activity—A Survey
Abstract
:1. Introduction
2. Research Methodology
- RQ1: What are the available EEG products that could be used for research, and what technical characteristics they have?
- RQ2: What are the main application domains within the brain activity field?
- RQ3: What type of research areas can be applied to each of the identified application domains?
- RQ4: Which products were preferred for a certain research topic?
3. Available Products
3.1. NeuroSky
3.2. Emotiv
3.3. InteraXon
3.4. OpenBCI
3.5. Other Products
4. Analysis
4.1. Study of Cognition
- -
- Emotions as emotion recognition and emotion classification;
- -
- Attention and mediation;
- -
- Mental workload as fatigue and stress;
- -
- Memory capability.
4.2. Brain–Computer Interface
4.3. Educational Research
4.4. Gaming
- -
- Effect on neurofunction (as emotions);
- -
- Brain-controlled games;
- -
- Neurological disorders and improvement.
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Maskeliunas, R.; Damasevicius, R.; Martisius, I.; Vasiljevas, M. Consumer-grade EEG devices: Are they usable for control tasks? PeerJ 2016, 4, e1746. [Google Scholar] [CrossRef]
- Baar, E.; Baar-Eroglu, C.; Karaka, S.; Schrmann, M. Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int. J. Psychophysiol. 2001, 39, 241–248. [Google Scholar] [CrossRef]
- Teplan, M. Fundamentals of EEG measurement. Measur. Sci. Rev. 2002, 2, 1–11. [Google Scholar]
- Van Der Stelt, O.; Belger, A. Application of electroencephalography to the study of cognitive and brain functions in schizophrenia. Schizophr. Bull. 2007, 33, 955–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrmann, C.S.; Struber, D.; Helfrich, R.F.; Engel, A.K. EEG oscillations: From correlation to causality. Int. J. Psychophysiol. 2016, 103, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Ratti, E.; Waninger, S.; Berka, C.; Ruffini, G.; Verma, A. Comparison of medical and consumer wireless EEG systems for use in clinical trials. Front. Hum. Neurosc. 2017, 11, 398. [Google Scholar] [CrossRef] [Green Version]
- Lim, C.G.; Lee, T.S.; Guan, C.; Fung, D.S.S.; Zhao, Y.; Teng, S.S.W.; Zhang, H.; Krishnan, K.R.R. A brain-computer interface-based attention training program for treating attention deficit hyperactivity disorder. PLoS ONE 2012, 7, e46692. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, S.; Qi, D.; Luo, Z.; Li, R.; Potter, T.; Zhang, Y. Driving drowsiness detection with EEG using a modified hierarchical extreme learning machine algorithm with particle swarm optimization: A pilot study. Electronics 2020, 9, 775. [Google Scholar] [CrossRef]
- Ilyas, M.; Othmani, A.; Fournier, R.; Nait-ali, A. Auditory perception based anti-spoofing system for human age verification. Electronics 2019, 8, 1313. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.L.; Lee, S.; Li, X.; He, J. EEG self-adjusting data analysis based on optimized sampling for robot control. Electronics 2020, 9, 925. [Google Scholar] [CrossRef]
- Nakanishi, I.; Maruoka, T. Biometrics using electroencephalograms stimulated by personal ultrasound and multidimensional nonlinear features. Electronics 2019, 9, 24. [Google Scholar] [CrossRef] [Green Version]
- XWave. Available online: https://www.eyecomtec.com/3405-XWave/ (accessed on 5 November 2020).
- Melon: A Headband and Mobile App to Measure Your Focus. Available online: https://www.kickstarter.com/projects/806146824/melon-a-headband-and-mobile-app-to-measure-your-fo (accessed on 5 November 2020).
- Aurora. Available online: https://sleepwithaurora.com/ (accessed on 5 November 2020).
- FocusBand. Available online: https://focusband.com/ (accessed on 5 November 2020).
- Roesler, O.; Bader, L.; Forster, J.; Hayashi, Y.; Heßler, S.; Suendermann-Oeft, D. Comparison of EEG Devices for Eye State Classification. In Proceedings of the AIHLS, Kusadasi-Aydin, Turkey, 19–22 October 2014. [Google Scholar]
- Arai, K.; Mardiyanto, R. Real time blinking detection based on gabor filter. IJHCI 2010, 1, 33–45. [Google Scholar]
- Abo-Zahhad, M.; Ahmed, S.M.; Abbas, S.N. A novel biometric approach for human identification and verification using eye blinking signal. IEEE Signal Proc. Lett. 2014, 22, 876–880. [Google Scholar] [CrossRef]
- Mental Commands. Available online: https://www.emotiv.com/knowledge-base/training-mental-commands/ (accessed on 5 November 2020).
- Facial Expression Detections. Available online: https://www.emotiv.com/knowledge-base/facial-expression-detections/ (accessed on 5 November 2020).
- Applications. Available online: https://www.emotiv.com/product-category/applications/ (accessed on 5 November 2020).
- Headset Comparison Chart. Available online: https://www.emotiv.com/comparison/ (accessed on 5 November 2020).
- Badcock, N.A.; Mousikou, P.; Mahajan, Y.; De Lissa, P.; Thie, J.; McArthur, G. Validation of the Emotiv EPOC EEG gaming system for measuring research quality auditory erps. PeerJ 2013, 1, e38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badcock, N.A.; Preece, K.A.; de Wit, B.; Glenn, K.; Fieder, N.; Thie, J.; McArthur, G. Validation of the Emotiv EPOC EEG system for research quality auditory event-related potentials in children. PeerJ 2015, 3, e907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barham, M.; Clark, G.M.; Hayden, M.J.; Enticott, P.G.; Conduit, R.; Lum, J.A. Acquiring research-grade ERPS on a shoestring budget: A comparison of a modified Emotiv and commercial Synamps EEG system. Psychophysiology 2017, 54, 1393–1404. [Google Scholar] [CrossRef]
- Schiff, S.; Casa, M.; Di Caro, V.; Aprile, D.; Spinelli, G.; De Rui, M.; Angeli, P.; Amodio, P.; Montagnese, S. A low-cost, user-friendly electroencephalographic recording system for the assessment of hepatic encephalopathy. Hepatology 2016, 63, 1651–1659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debener, S.; Minow, F.; Emkes, R.; Gandras, K.; De Vos, M. How about taking a low-cost, small, and wireless EEG for a walk? Psychophysiology 2012, 49, 1617–1621. [Google Scholar] [CrossRef]
- Duvinage, M.; Castermans, T.; Petieau, M.; Hoellinger, T.; Cheron, G.; Dutoit, T. Performance of the Emotiv Epoc headset for P300-based applications. Biomed. Eng. Online 2013, 12, 56. [Google Scholar] [CrossRef] [Green Version]
- Duvinage, M.; Castermans, T.; Dutoit, T.; Petieau, M.; Hoellinger, T.; De Saedeleer, C.; Seetharaman, K.; Cheron, G. A P300-based quantitative comparison between the Emotiv Epoc headset and a medical EEG device. Biomed. Eng. 2012, 765, 2012–2764. [Google Scholar]
- ANTneuro. Available online: https://www.ant-neuro.com/ (accessed on 5 November 2020).
- Harrison, T. The Emotiv Mind: Investigating the Accuracy of the Emotiv Epoc in Identifying Emotions and its Use in an Intelligent Tutoring System; Honors Report; University of Canterbury: Canterbury, New Zealand, 2013. [Google Scholar]
- Lei, X.; Liao, K. Understanding the influences of EEG reference: A large-scale brain network perspective. Front. Neurosci. 2017, 11, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krigolson, O.E.; Williams, C.C.; Norton, A.; Hassall, C.D.; Colino, F.L. Choosing muse: Validation of a low-cost, portable EEG system for ERP research. Front. Neurosci. 2017, 11, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Picton, T.; Bentin, S.; Berg, P.; Donchin, E.; Hillyard, S.; Johnson, R.; Miller, G.; . Ritter, W.; Ruchkin, D.; Rugg, M.; et al. Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria. Psychophysiology 2000, 37, 127–152. [Google Scholar] [CrossRef] [PubMed]
- Shorey, R.; Miller, B.A. The Bluetooth technology: Merits and limitations. In Proceedings of the IEEE International Confrence on Personal Wireless Communications, Hyderabad, India, 17–20 December 2000. [Google Scholar]
- Luque, J.R.; Moron, M.J.; Casilari, E. Analytical and empirical evaluation of the impact of gaussian noise on the modulations employed by bluetooth enhanced data rates. EURASIP J. Wirel. Comm. Netw. 2012, 2012, 94. [Google Scholar] [CrossRef] [Green Version]
- Frey, J. Comparison of a consumer grade EEG amplifier with medical grade equipment in BCI applications. In Proceedings of the International BCI Meeting, Asilomar, CA, USA, 30 May–3 June 2016. [Google Scholar]
- Muhl, C.; Jeunet, C.; Lotte, F. EEG-based workload estimation across affective contexts. Front. Neurosci. 2014, 8, 114. [Google Scholar] [PubMed] [Green Version]
- Rashid, U.; Niazi, I.; Signal, N.; Taylor, D. An EEG experimental study evaluating the performance of Texas Instruments ads1299. Sensors 2018, 18, 3721. [Google Scholar] [CrossRef] [Green Version]
- Thomas, K.; Vinod, A.; Guan, C. Design of an online EEG based neurofeedback game for enhancing attention and memory. In Proceedings of the 35th Annual Intnational Conference IEEE EMBC, Osaka, Japan, 3–7 July 2013. [Google Scholar]
- Lim, C.G.; Poh, X.W.W.; Fung, S.S.D.; Guan, C.; Bautista, D.; Cheung, Y.B.; Zhang, H.; Yeo, S.N.; Krishnan, R.; Lee, T.S. A randomized controlled trial of a brain-computer interface-based attention training program for ADHD. PLoS ONE 2019, 14, e0216225. [Google Scholar] [CrossRef] [Green Version]
- Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev. 1999, 29, 169–195. [Google Scholar] [CrossRef]
- Aarts, J.; Binnie, C.; Smit, A.; Wilkins, A. Selective cognitive impairment during focal and generalized epileptiform EEG activity. Brain 1984, 107, 293–308. [Google Scholar] [CrossRef] [Green Version]
- Lakhan, P.; Banluesombatkul, N.; Changniam, V.; Dhithijaiyratn, R.; Leelaarporn, P.; Boonchieng, E.; Hompoonsup, S.; Wilaiprasitporn, T. Consumer grade brain sensing for emotion recognition. IEEE Sens. J. 2019, 19, 1. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.L.; Wong, T.C.H.; Leung, B.H.K.; Poon, C.C.Y. Unobtrusive and multimodal wearable sensing to quantify anxiety. IEEE Sens. J. 2016, 16, 3689–3696. [Google Scholar] [CrossRef]
- Liu, Y.J.; Yu, M.J.; Zhao, G.Z.; Song, J.J.; Ge, Y.; Shi, Y.C. Real-time movie-induced discrete emotion recognition from EEG signals. IEEE Trans. Affect. Comput. 2018, 9, 550–562. [Google Scholar] [CrossRef]
- Katsigiannis, S.; Ramzan, N. Dreamer: A database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices. IEEE J. Biomed. Health Inform. 2018, 22, 98–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, A.; Rey, B.; Clemente, M.; Wrzesien, M.; Alcaniz, M. Assessing brain activations associated with emotional regulation during virtual reality mood induction procedure. Expert Syst. Appl. 2015, 42, 1699–1709. [Google Scholar] [CrossRef] [Green Version]
- Betti, S.; Lova, R.M.; Rovini, E.; Acerbi, G.; Santarelli, L.; Cabiati, M.; Del Ry, S.; Cavallo, F. Evaluation of an integrated system of wearable physiological sensors for stress monitoring in working environments by using biological markers. IEEE Trans. Biom. Eng. 2018, 65, 1748–1758. [Google Scholar]
- Hashemi, A.; Pino, L.J.; Moffat, G.; Mathewson, K.J.; Aimone, C.; Bennett, P.J.; Schmidt, L.A.; Sekuler, A.B. Characterizing population EEG dynamics throughout adulthood. eNeuro 2016, 3. [Google Scholar] [CrossRef]
- Buszard, T.; Farrow, D.; Zhu, F.F.; Masters, R.S.W. The relationship between working memory capacity and cortical activity during performance of a novel motor task. Psychol. Sport Exerc. 2016, 22, 247–254. [Google Scholar] [CrossRef]
- Wang, S.Y.; Gwizdka, J.; Chaovalitwongse, W.A. Using wireless EEG signals to assess memory workload in the n-back task. IEEE Trans. Hum. Mach. Sys. 2016, 46, 424–435. [Google Scholar] [CrossRef]
- Martin, M.V.; Cho, V.; Aversano, G. Detection of subconscious face recognition using consumer-grade brain-computer interfaces. ACM Trans. Appl. Percept. 2019, 14, 7:1–7:20. [Google Scholar] [CrossRef]
- Gwizdka, J.; Hosseini, R.; Cole, M.; Wang, S.Y. Temporal dynamics of eye-tracking and EEG during reading and relevance decisions. J. Assoc. Inf. Sci. Tech. 2017, 68, 2299–2312. [Google Scholar] [CrossRef]
- So, W.K.Y.; Wong, S.W.H.; Mak, J.N.; Chan, R.H.M. An evaluation of mental workload with frontal EEG. PLoS ONE 2017, 12, e0174949. [Google Scholar] [CrossRef] [PubMed]
- Morales, J.; Diaz-Piedra, C.; Rieiro, H.; Gonzlez, J.; Romero, S.; Catena, A.; Fuentes, L.; Di Stasi, L. Monitoring driver fatigue using a single-channel electroencephalographic device: A validation study by gaze-based, driving performance, and subjective data. Accid. Anal. Prev. 2017, 109, 6269. [Google Scholar] [CrossRef] [PubMed]
- Mhlbacher-Karrer, S.; Mosa, A.H.; Faller, L.; Ali, M.; Hamid, R.; Zangl, H.; Kyamakya, K. A driver state detection system combining a capacitive hand detection sensor with physiological sensors. IEEE Trans. Instrum. Meas. 2017, 66, 624–636. [Google Scholar] [CrossRef]
- Herrera-Arcos, G.; Tamez-Duque, J.; Acosta-De-Anda, E.Y.; Kwan- Loo, K.; de Alba, M.; Tamez-Duque, U.; Contreras-Vidal, J.L.; Soto, R. Modulation of neural activity during guided viewing of visual art. Front. Hum. Neurosci. 2017, 11, 581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Chen, J.; Zhao, D.; Dai, F.; Zheng, C.; Wu, X. Monitoring workers’ attention and vigilance in construction activities through a wireless and wearable electroencephalography system. Autom. Constr. 2017, 82, 122–137. [Google Scholar] [CrossRef]
- Mohamed, Z.; Halaby, M.E.; Said, T.; Shawky, D.; Badawi, A. Characterizing focused attention and working memory using EEG. Sensors 2018, 18, 3743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramsy, T.Z.; Skov, M.; Christensen, M.K.; Stahlhut, C. Frontal brain asymmetry and willingness to pay. Front. Neurosci. 2018, 12, 138. [Google Scholar] [CrossRef]
- Abiri, R.; Borhani, S.; Jiang, Y.; Zhao, X. Decoding attentional state to faces and scenes using EEG brainwaves. Complexity 2019, 2019, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Mehreen, A.; Anwar, S.M.; Haseeb, M.; Majid, M.; Ullah, M.O. A hybrid scheme for drowsiness detection using wearable sensors. IEEE Sens. J. 2019, 19, 5119–5126. [Google Scholar] [CrossRef]
- Arsalan, A.; Majid, M.; Butt, A.R.; Anwar, S.M. Classification of perceived mental stress using a commercially available EEG headband. IEEE J. Biomed. Health Inf. 2019, 23, 2257–2264. [Google Scholar] [CrossRef]
- Vidal, J.J. Toward direct brain-computer communication. Annu. Rev. Biophys. Bioeng. 1973, 2, 157–180. [Google Scholar] [CrossRef] [PubMed]
- Wolpaw, J.R.; Birbaumer, N.; McFarland, D.J.; Pfurtscheller, G.; Vaughan, T.M. Brain–computer interfaces for communication and control. Clin. Neurophysiol. 2002, 113, 767–791. [Google Scholar] [CrossRef]
- Farwell, L.A.; Donchin, E. Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials. Electroencepha. Clin. Neurophys 1988, 70, 510–523. [Google Scholar] [CrossRef]
- Wilaiprasitporn, T.; Yagi, T. Orientation-modulated attention effect on visual evoked potential: Application for pin system using brain-computer interface. In Proceedings of the IEEE EMBC, Milan, Italy, 25–29 August 2015. [Google Scholar]
- Ludwig, S.A.; Kong, J. Investigation of different classifiers and channel configurations of a mobile P300-based brain–computer interface. Med. Bio. Eng. Comput. 2017, 55, 2143–2154. [Google Scholar] [CrossRef] [PubMed]
- Elsawy, A.S.; Eldawlatly, S.; Taher, M.; Aly, G.M. Mindedit: A P300-based text editor for mobile devices. Comput. Biol. Med. 2017, 80, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Perez-Vidal, A.; Garcia-Beltran, C.; Martinez-Sibaja, A.; Posada-Gomez, R. Use of the stockwell transform in the detection of p300 evoked potentials with low-cost brain sensors. Sensors 2018, 18, 1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Middendorf, M.; McMillan, G.; Calhoun, G.; Jones, K.S. Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Trans. Rehabil. Eng. 2000, 8, 211–214. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Zhang, C.; Wu, W.; Gao, X. Frequency recognition based on canonical correlation analysis for SSVEP-based BCI. IEEE Trans. Biomed. Eng. 2006, 53, 2610–2614. [Google Scholar] [CrossRef]
- Wilaiprasitporn, T.; Yagi, T. Personal identification number application using adaptive P300 brain-computer interface. IEEE Trans. Electron. Inf. Syst. 2016, 136, 1277–1282. [Google Scholar] [CrossRef]
- Anil, D.G.; Pelayo, P.; Mistry, K.S.; George, K. A tactile P300 based brain computer interface system for communication in IOS devices. In Proceedings of the IEEE I2MTC, Houston, TX, USA, 14–17 May 2018; pp. 1–6. [Google Scholar]
- Wang, M.; Li, R.; Zhang, R.; Li, G.; Zhang, D. A wearable SSVEP-based BCIsystem for quadcopter control using head-mounted device. IEEE Access 2018, 6, 26789–26798. [Google Scholar] [CrossRef]
- Lamti, H.A.; Khelifa, M.M.B.; Hugel, V. Cerebral and gaze data fusion for wheelchair navigation enhancement: Case of distracted users. Robotica 2019, 37, 246–263. [Google Scholar] [CrossRef]
- Shivappa, V.K.K.; Luu, B.; Solis, M.; George, K. Home automation system using brain computer interface paradigm based on auditory selection attention. In Proceedings of the IEEE I2MTC, Houston, TX, USA, 14–17 May 2018; pp. 1–6. [Google Scholar]
- Athanasiou, A.; Xygonakis, I.; Pandria, N.; Kartsidis, P.; Arfaras, G.; Kavazidi, K.R.; Foroglou, N.; Astaras, A.; Bamidis, P.D. Towards rehabilitation robotics: Off-the-shelf BCI control of anthropomorphic robotic arms. BioMed. Res. Int. 2017, 2017, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinheiro, O.R.; Alves, L.R.G.; de Souza, J.R. EEG signals classification: Motor imagery for driving an intelligent wheelchair. IEEE Lat. Am. Trans. 2018, 16, 254–259. [Google Scholar] [CrossRef]
- Shi, Y.; Li, F.; Liu, T.; Beyette, F.R.; Song, W. Dynamic time-frequency feature extraction for brain activity recognition. In Proceedings of the IEEE EMBC, Honolulu, HI, USA, 17–21 July 2018; pp. 3104–3107. [Google Scholar]
- Yohanandan, S.A.; Kiral-Kornek, I.; Tang, J.; Mshford, B.S.; Asif, U.; Harrer, S. A robust low-cost EEG motor imagery-based brain-computer interface. In Proceedings of the IEEE EMBC, Honolulu, HI, USA, 17–21 July 2018; pp. 5089–5092. [Google Scholar]
- Kaongoen, N.; Jo, S. A novel hybrid auditory BCI paradigm combining ASSR and P300. J. Neurosci. Methods 2017, 279, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Kaur, B.; Singh, D.; Roy, P.P. Age and gender classification using brain–computer interface. Neural Comput. Appl. 2018, 31, 1–14. [Google Scholar] [CrossRef]
- Kaushik, P.; Gupta, A.; Roy, P.P.; Dogra, D. EEG-based age and gender prediction using deep BLSTM-LSTM network model. IEEE Sens. J. 2018, 19, 2634–2641. [Google Scholar] [CrossRef]
- Jiang, L.; Stocco, A.; Losey, D.M.; Abernethy, J.A.; Prat, C.S.; Rao, R.P. Brainnet: A multi-person brain-to-brain interface for direct collaboration between brains. Sci. Rep. 2019, 9, 6115. [Google Scholar] [CrossRef] [Green Version]
- Terracciano, R.; Sanginario, A.; Barbero, S.; Putignano, D.; Canavese, L.; Demarchi, D. Pattern-reversal visual evoked potential on smart glasses. IEEE J. Biomed. Health Inf. 2020, 24, 226–234. [Google Scholar] [CrossRef]
- Tobii. World Leader in Eye Tracker. Available online: https://www.tobii.com/ (accessed on 5 November 2020).
- Galambos, R.; Makeig, S.; Talmachoff, J. A 40Hz auditory potential recorded from the human scal. Proc. Natl. Acad. Sci. USA 1981, 78, 2643–2647. [Google Scholar] [CrossRef] [Green Version]
- Kidmose, P.; Looney, D.; Ungstrup, M.; Rank, M.L.; Mandic, D.P. A study of evoked potentials from ear-EEG. IEEE Trans. Biomed. Eng. 2013, 60, 2824–2830. [Google Scholar] [CrossRef]
- Pfurtscheller, G.; Neuper, C. Motor imagery and direct brain-computer communication. Proc. IEEE 2001, 89, 1123–1134. [Google Scholar] [CrossRef]
- Minguillon, J.; Lopez-Gordo, M.A.; Pelayo, F. Trends in EEG-BCI for daily-life: Requirements for artifact removal. Biomed. Signal Process. Control. 2017, 31, 407–418. [Google Scholar] [CrossRef]
- Sreeja, S.; Sahay, R.R.; Samanta, D.; Mitra, P. Removal of eye blink artifacts from EEG signals using sparsity. IEEE J. Biomed. Health Inform. 2017, 22, 1362–1372. [Google Scholar] [CrossRef]
- Liu, N.-H.; Chiang, C.-Y.; Chu, H.-C. Recognizing the degree of human attention using EEG signals from mobile sensors. Sensors 2013, 13, 10273–10286. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-M.; Wang, J.-Y.; Yu, C.-M. Assessing the attention levels of students by using a novel attention aware system based on brainwave signals. Br. J. Edu. Technol. 2017, 48, 348–369. [Google Scholar] [CrossRef]
- Sun, J.C.-Y. Influence of polling technologies on student engagement: An analysis of student motivation, academic performance, and brainwave data. Comput. Educ. 2014, 72, 80–89. [Google Scholar] [CrossRef]
- Che, C.-M.; Lin, Y.-J. Effects of different text display types on reading comprehension, sustained attention and cognitive load in mobile reading contexts. Interac. Learn. Environ. 2016, 24, 553–571. [Google Scholar]
- Wei, C.-C.; Ma, M.-Y. Influences of visual attention and reading time on children and adults. Read. Writ. Q. 2017, 33, 97–108. [Google Scholar] [CrossRef]
- Ma, M.-Y.; Wei, C.-C. A comparative study of children’s concentration performance on picture books: Age, gender, and media forms. Interac. Learn. Environ. 2016, 24, 1922–1937. [Google Scholar] [CrossRef]
- Chen, C.-M.; Wu, C.-H. Effects of different video lecture types on sustained attention, emotion, cognitive load, and learning performance. Comput. Educ. 2015, 80, 108–121. [Google Scholar] [CrossRef]
- Wang, C.-C.; Hsu, M.-C. An exploratory study using inexpensive electroencephalography (EEG) to understand flow experience in computer-based instruction. Inf. Manag. 2014, 51, 912–923. [Google Scholar] [CrossRef]
- Chen, C.-M.; Huang, S.H. Web-based reading annotation system with an attention-based self-regulated learning mechanism for promoting reading performance. Br. J. Educ. Technol. 2014, 45, 959–980. [Google Scholar] [CrossRef]
- Lin, C.-S.; Lai, Y.-C.; Lin, J.-C.; Wu, P.-Y.; Chang, H.-C. A novel method for concentration evaluation of reading behaviors with electrical activity recorded on the scal. Comput. Methods Progr. Biomed. 2014, 114, 164–171. [Google Scholar] [CrossRef]
- Lai, C.-H.; Liu, M.-C.; Liu, C.-J.; Huang, Y.-M. Using positive visual stimuli to lighten the online learning experience through in class questioning. Int. Rev. Res. Open Distrib. Learn. 2016, 17, 23–41. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.-C.K.; Su, S.-H.; Chao, C.-J.; Hsieh, C.-Y.; Tsai, S.-C. Construction of multi-mode affective learning system: Taking affective design as an example. J. Educ. Technol. Soc. 2016, 19, 132–147. [Google Scholar]
- Shadiev, R.; Wu, T.-T.; Huang, Y.-M. Enhancing learning performance, attention, and meditation using a speech-to-text recognition application: Evidence from multiple data sources. Interact. Learn. Environ. 2017, 25, 249–261. [Google Scholar] [CrossRef]
- Huang, Y.-M.; Liu, M.-C.; Lai, C.-H.; Liu, C.-J. Using humorous images to lighten the learning experience through questioning in class. Br. J. Educ. Technol. 2017, 48, 878–896. [Google Scholar] [CrossRef]
- Shadiev, R.; Huang, Y.-M.; Hwang, J.-P. Investigating the effectiveness of speech-to-text recognition applications on learning performance, attention, and meditation. Educ. Technol. Res. Dev. 2017, 65, 1239–1261. [Google Scholar] [CrossRef]
- Kuo, Y.-C.; Chu, H.-C.; Tsai, M.-C. Effects of an integrated physiological signal-based attention-promoting and English listening system on students’ learning performance and behavioral patterns. Comput. Hum. Behav. 2017, 75, 218–227. [Google Scholar] [CrossRef]
- Sun, J.C.-Y.; Yeh, K.-C. The effects of attention monitoring with EEG biofeedback on university students’ attention and self-efficacy: The case of anti-phishing instructional materials. Comput. Educ. 2017, 106, 73–82. [Google Scholar] [CrossRef]
- Chen, C.-M.; Wang, J.-Y. Effects of online synchronous instruction with an attention monitoring and alarm mechanism on sustained attention and learning performance. Interact. Learn. Environ. 2018, 26, 427–443. [Google Scholar] [CrossRef]
- Ghergulescu, I.; Muntean, C.H. A novel sensor-based methodology for learner’s motivation analysis in game-based learning. Interact. Comput. 2014, 26, 305–320. [Google Scholar] [CrossRef]
- Ghergulescu, I.; Muntean, C.H. Totcompute: A novel EEG-based time on task threshold computation mechanism for engagement modelling and monitoring. Int. J. Artif. Intell. Edu. 2016, 26, 821–854. [Google Scholar] [CrossRef] [Green Version]
- Dikker, S.; Wan, L.; Davidesco, I.; Kaggen, L.; Oostrik, M.; McClintock, J.; Rowland, J.; Michalareas, G.; Van Bavel, J.J.; Ding, M.; et al. Brain-to-brain synchrony tracks real-world dynamic group interactions in the classroom. Curr. Biol. 2017, 27, 1375–1380. [Google Scholar] [CrossRef] [PubMed]
- Bevilacqua, D.; Davidesco, I.; Wan, L.; Chaloner, K.; Rowland, J.; Ding, M.; Poeppel, D.; Dikker, S. Brain-to-brain synchrony and learning outcomes vary by student–teacher dynamics: Evidence from a real-world classroom electroencephalography study. J. Cogn. Neurosci. 2019, 31, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Inventado, S.; Legaspi, R.; Suarez, M.; Numao, M. Predicting student emotions resulting from appraisal of its feedback. Res. Pract. Technol. Enhanc. Learn. 2011, 6, 107–133. [Google Scholar]
- Ghali, R.; Ouellet, S.; Frasson, C. Lewispace: An exploratory study with a machine learning model in an educational game. J. Educ. Train. Stud. 2015, 4, 192–201. [Google Scholar] [CrossRef] [Green Version]
- Notaro, G.M.; Diamond, S.G. Simultaneous EEG, eye-tracking, behavioral, and screen-capture data during online German language learning. Data Brief 2018, 21, 1937–1943. [Google Scholar] [CrossRef]
- Sinha, A.; Roy, D.; Chaki, R.; De, B.K.; Saha, S.K. Readability analysis based on cognitive assessment using physiological sensing. IEEE Sens. J. 2019, 19, 8127–8135. [Google Scholar] [CrossRef]
- Sharbrough, F.; Chatrian, G.; Lesser, R.; Luders, H.; Nuwer, M.; Picton, T. American electroencephalographic society guidelines for standard electrode position nomenclature. Clin. Neurophysiol. 1991, 8, 200–202. [Google Scholar]
- Multimodal Duolingo Bio-Signal Dataset. Available online: https://figshare.com/s/688e387fbfdc000f4e90 (accessed on 5 November 2020).
- Aliyari, H.; Sahraei, H.; Daliri, M.R.; Minaei-Bidgoli, B.; Kazemi, M.; Agaei, H.; Sahraei, M.; Seyed Hosseini, S.M.A.; Hadipour, M.M.; Mohammadi, M.; et al. The beneficial or harmful effects of computer game stress on cognitive functions of players. Basic Clin. Neurosci. J. 2018, 9, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Kosiski, J.; Szklanny, K.; Wieczorkowska, A.; Wichrowski, M. An analysis of game-related emotions using Emotiv EPOC. In Proceedings of the FedCSIS, Poznań, Poland, 9–12 September 2018. [Google Scholar]
- Anwar, S.M.; Saeed, S.M.U.; Majid, M.; Usman, S.; Mehmood, C.A.; Liu, W. A game player expertise level classification system using electroencephalography (EEG). Appl. Sci. 2018, 8, 18. [Google Scholar] [CrossRef] [Green Version]
- Lee, X.Y.; Koukouna, E.; Lim, C.G.; Guan, C.; Lee, T.S.; Fung, D.S.S. Can We Play with ADHD? An Alternative Game-Based Treatment for Inattentive Symptoms in Attention-Deficit/Hyperactivity Disorder. In Subconscious Learning via Games and Social Media. Gaming Media and Social Effects; Sourina, O., Wortley, D., Kim, S., Eds.; Springer: Singapore, 2015. [Google Scholar]
- Mondajar, T.; Hervs, R.; Johnson, E.; Gutierrez, C.; Latorre, J.M. Correlation between videogame mechanics and executive functions through EEG analysis. J. Biomed. Infor. 2016, 63, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Mondejar, T.; Herva’s, R.; Latorre, J.M.; Diaz, I.G.; Bravo, J. Analysis of EEG frequency bands during typical mechanics of platform-videogames. In Ubiquitous Computing and Ambient Intelligence; Garcıa, C.R., Caballero-Gil, P., Burmester, M., Quesada-Arencibia, A., Eds.; Springer International Publishing: Cham, Germany, 2016; pp. 306–317. [Google Scholar]
- Chen, D.; James, J.; Bao, F.S.; Ling, C.; Fan, T. Relationship between video game events and player emotion based on EEG. In Human-Computer Interaction. Novel User Experiences; Kurosu, M., Ed.; Springer: Cham, Germany, 2016. [Google Scholar]
- Mondejar, T.; Hervas, R.; Johnson, E.; Gutierrez-Lopez-Franca, C.; Latorre, J.M. Analyzing EEG waves to support the design of serious games for cognitive training. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 2161–2174. [Google Scholar] [CrossRef]
- McMahan, T.; Parberry, I.; Parsons, T.D. Evaluating player task engagement and arousal using electroencephalography. Procedia Manuf. 2015, 3, 2303–2310. [Google Scholar] [CrossRef] [Green Version]
- Anwar, S.M.; Saeed, S.M.U.; Majid, M. Classification of Expert-Novice Level of Mobile Game Players Using Electroencephalography; FIT: Islamabad, Pakistan, 2016; pp. 315–318. [Google Scholar]
- Stein, A.; Yotam, Y.; Puzis, R.; Shani, G.; Taieb-Maimon, M. EEG-triggered dynamic difficulty adjustment for multiplayer games. Entertain. Comput. 2018, 25, 14–25. [Google Scholar] [CrossRef]
- Van der Pal, J.; Roos, C.; Sewnath, G. Exploring Adaptive Game-Based Learning Using Brain Measures. In Digital Technologies: Sustainable Innovations for Improving Teaching and Learning; Sampson, D., Ifenthaler, D., Spector, J., Isaías, P., Eds.; Springer: Cham, Germany, 2018. [Google Scholar]
- Vasiljevic, G.A.M.; de Miranda, L.C. The influence of graphical elements on users attention and control on a neurofeedback-based game. Entertain. Comput. 2019, 29, 10–19. [Google Scholar] [CrossRef]
- Vasiljevic, G.A.M.; de Miranda, L.C.; de Menezes, B.C. Mental war: An attention-based single/multiplayer brain-computer interface game. In Computational Science and Its Applications–ICCSA 2018: 18th International Conference, Melbourne, VIC, Australia, 2–5 July 2018, Proceedings, Part I; Gervasi, O., Ed.; Springer: Cham, Germany, 2018; pp. 450–465. [Google Scholar]
- Queiroz, R.L.; Bichara de Azeredo Coutinho, I.; Xexo, G.B.; Machado Vieira Lima, P.; Sampaio, F.F. Playing with robots using your brain. In Brazilian Symposium on Computer Games and Digital Entertainment (SBGames); IEEE: Piscataway, MJ, USA, 2018; pp. 548–555. [Google Scholar]
- Kovacevic, N.; Ritter, P.; Tays, W.; Moreno, S.; McIntosh, A.R. My virtual dream: Collective neurofeedback in an immersive art environment. PLoS ONE 2015, 10, e0130129. [Google Scholar] [CrossRef]
- Blandn, D.Z.; Muoz, J.E.; Lopez, D.S.; Gallo, O.H. Influence of a BCI neurofeedback videogame in children with ADHD. Quantifying the brain activity through an EEG signal processing dedicated toolbox. In Proceedings of the IEEE 11th Colombian Computing Conference (CCC), Popayán, Colombia, 27–30 September 2016; pp. 1–8. [Google Scholar]
- Liu, Y.; Hou, X.; Sourina, O.; Bazanova, O. Individual Theta/Beta Based Algorithm for Neurofeedback Games to Improve Cognitive Abilities. In Transactions Computer Science XXVI. LNCS; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9550, pp. 57–73. [Google Scholar]
- Johnstone, S.J.; Roodenrys, S.J.; Johnson, K.; Bonfield, R.; Bennett, S.J. Game-based combined cognitive and neurofeedback training using focus pocus reduces symptom severity in children with diagnosed ADHD and subclinical ADHD. Int. J. Psychophysiol. 2017, 116, 32–44. [Google Scholar] [CrossRef]
- Teruel, M.A.; Navarro, E.; Romero, D.; Garcia, M.; Fernandez-Caballero, A.; Gonzalez, P. An innovative tool to create neurofeedback games for ADHD treatment. In International Work-Conference on the Interplay Between Natural and Artificial Computation; Springer: Cham, Germany, 2017. [Google Scholar]
- Alchalabi, A.E.; Shirmohammadi, S.; Eddin, A.N.; Elsharnouby, M. Focus: Detecting ADHD patients by an EEG-based serious game. IEEE Trans. Instrument. Meas. 2018, 67, 1512–1520. [Google Scholar] [CrossRef]
- Schoneveld, E.A.; Lichtwarck-Aschoff, A.; Granic, I. Preventing childhood anxiety disorders: Is an applied game as effective as a cognitive behavioral therapy-based program? Prev. Sci. 2018, 19, 220–232. [Google Scholar] [CrossRef] [Green Version]
- Wols, A.; Lichtwarck-Aschoff, A.; Schoneveld, E.A.; Granic, I. In-game play behaviours during an applied video game for anxiety prevention predict successful intervention outcome. J. Psychopath. Behav. Assess. 2018, 40, 655–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.; Ye, Y.; Li, X.; Wang, R. Development of a neuro-feedback game based on motor imagery EEG. Multimed. Tools Appl. 2018, 77, 15929–15949. [Google Scholar] [CrossRef]
- Mercado, J.; Espinosa-Curiel, I.; Escobedo, L.; Tentori, M. Developing and evaluating a BCI video game for neurofeedback training: The case of autism. Multimed. Tools Appl. 2019, 8, 13675–13712. [Google Scholar] [CrossRef]
- Taherian, S.; Selitskiy, D.; Pau, J.; Davies, T.C. Are we there yet? Evaluating commercial grade brain computer interface for control of computer applications by individuals with cerebral palsy. Disabil. Rehabil. Assist. Technol. 2017, 12, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Vourvopoulos, A.; Faria, A.L.; Cameiro, M.S.; Bermdez i Badia, S. RehabNet: A distributed architecture for motor and cognitive neuro-rehabilitation. In Proceedings of the 2013 IEEE 15th International Conference on e-Health Networking, Applications and Services, Lisbon, Portugal, 9–12 October 2013; pp. 454–459. [Google Scholar]
- Meisel, V.; Servera, M.; Garcia-Banda, G.; Cardo, E.; Moreno, I. Neurofeedback and standard pharmacological intervention in ADHD: A randomized controlled trial with six-month follow-u. Biol. Psychol. 2013, 94, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Evans, S.W.; Owens, J.S.; Bunford, N. Evidence-based psychosocial treatments for children and adolescents with attention-deficit/hyperactivity disorder. J. Clin. Child Adolesc. Psychol. 2014, 43, 527–551. [Google Scholar] [CrossRef] [Green Version]
- Hodgson, K.; Hutchinson, A.D.; Denson, L. Nonpharmacological treatments for ADHD: A meta-analytic review. J. Atten. Disord. 2014, 18, 275–282. [Google Scholar] [CrossRef]
- Holtmann, M.; Sonuga-Barke, E.; Cortese, S.; Brandeis, D. Neuro-feedback for ADHD: A review of current evidence. Child Adolesc. Psychiatr. Clin. N. Am. 2014, 23, 789–806. [Google Scholar] [CrossRef] [Green Version]
- Georgiadis, K.; van Oostendorp, H.; van der Pal, J. EEG assessment of surprise effects in serious games. In Games and Learning Alliance; De Gloria, A., Veltkamp, R., Eds.; Springer: Cham, Germany, 2016; pp. 517–529. [Google Scholar]
Product | Sensor | Channel | Sampling Rate [Hz] | Wireless Connection | Raw data Access | Operating Time (Up to, Hours) | Price [USD] | Released |
---|---|---|---|---|---|---|---|---|
NeuroSky MindSet *,1 | Dry | 1 | 512 | Yes | Yes | - | - | 2007 |
Neural Impulse Actuator * | Dry | - | - | Yes | No | - | - | 2008 |
Mindflex **,2 | Dry | 1 | 512 | No | No | - | 99 | 2009 |
Emotiv EPOC *,3 | Wet | 14 | 128 | Yes | Yes | - | - | 2009 |
MindWave *,2 | Dry | 1 | 512 | Yes | Yes | - | - | 2011 |
XWave headset [12] | Dry | 1 | 512 | Yes | No | - | - | 2011 |
Necomimi **,4 | Dry | 1 | 512 | No | No | - *** | 69 | 2012 |
Emotiv EPOC+ 5 | Wet | 14 | 128/256 | Yes | Yes | 6 | 799 | 2013 |
Melon HeadBand * [13] | Dry | 3 | - | Yes | - | - | - | 2014 |
MyndPlay Myndband 4 | Dry | 1 | 512 | Yes | Yes | 10 | 219 | 2014 |
Muse 6 | Dry | 4 | 220/500 | Yes | Yes | 5 | 199 | 2014 |
OpenBCI 7 | Dry/wet | 8/16 | 250 | Yes | Yes | - *** | 199/950 | 2014 |
Aurora Dreamband [14] | Dry | 1 | - | Yes | Yes | - | 299 | 2015 |
Emotiv INSIGHT 6 | Semi-dry | 5 | 128 | Yes | Yes | 4 | 299 | 2015 |
Muse 2 7 | Dry | 4 | 256 | Yes | Yes | 5 | 239 | 2016 |
FocusBand [15] | Dry | 2 | 128 | Yes | No | 12 | 600 | 2016 |
SenzeBand 8 | Dry | 4 | 250 | Yes | Yes | 4 | 299 | 2016 |
MindWave Mobile 2 | Dry | 1 | 512 | Yes | Yes | 8 | 199 | 2018 |
Reference | Product | Method | Accuracy (%) | Subject | Study | Year |
---|---|---|---|---|---|---|
[48] | Emotiv EPOC | Independent component analysis | n/a | 27 | Emotion regulation | 2015 |
[45] | NeuroSky MindWave Mobile | kNN+SVM | 63 | 20 | Emotion classification | 2016 |
[47] | Emotiv EPOC | SVM | 23 | Emotion classification | 2018 | |
[46] | Emotiv EPOC | SVM | 65–92 | 30 | Emotion classification | 2018 |
[49] | NeuroSky MindWave Mobile | SVM | 86 | 15 | Emotion classification | 2018 |
[44] | OpenBCI | K-means | 70 | 43 | Emotion classification | 2019 |
[50] | Muse | Statistical analysis | n/a | 6029 | Attention and meditation | 2016 |
[51] | Emotiv EPOC | Statistical analysis | n/a | 9 | Working memory | 2016 |
[52] | Emotiv * | Statistical analysis | n/a | 18 | Working memory | 2016 |
[53] | Emotiv EPOC | SVM | 65–67 | 19 | Subconscious face recognition | 2016 |
[54] | Emotiv EPOC | Perceived relevance | - | 24 | Relevance judgement | 2017 |
[55] | NeuroSky MindWave Mobile | SVM | 65–75 | 20 | Mental workload | 2017 |
[56] | NeuroSky’s chip (TGAM) | Statistical analysis | n/a | 15 | Mental fatigue | 2017 |
[57] | Emotiv EPOC | CNN | 92 | 22 | Mental fatigue | 2017 |
[58] | Muse | SVM | 65 | 209 | Esthetic preference | 2017 |
[59] | Emotiv EPOC+ | Statistical analysis | n/a | 10 | Attention and vigilance | 2017 |
[60] | Emotiv EPOC | RF, SVC, KNN, GP and 6 more | up to 80 | 86 | Attention and working memory | 2018 |
[61] | Emotiv EPOC | Statistical analysis | n/a | 16 | Decision making | 2018 |
[62] | Emotiv EPOC | SVM | 77 | 6 | Attention | 2019 |
[63] | Muse | SVM | 92 | 50 | Drowsiness | 2019 |
[64] | Muse | Binary classification | 64 | 28 | Mental stress | 2019 |
Reference | Product | Method | Accuracy (%) | Subject | Research Topic | Year |
---|---|---|---|---|---|---|
[68] | OpenBCI | Statistical analysis | 61–83 | 7 | ERP | 2015 |
[74] | OpenBCI | Statistical analysis | 83–86 | 10 | ERP | 2016 |
[69] | Emotiv EPOC+ | LDA, SWLDA, BLDA, SVM, NN | 75–92 | 14 | ERP | 2017 |
[70] | Emotiv EPOC | Least squares, FLDA | 85 | 6 | ERP | 2017 |
[75] | OpenBCI | Unknown | 66 | 4 | ERP | 2018 |
[71] | Emotiv EPOC | SVM | 80 | 10 | ERP | 2018 |
[76] | Emotiv EPOC | canonical correlation analysis | 78 | 10 | SSVEP | 2018 |
[77] | Emotiv EPOC | MLP NN | 96–99 | 5 | SSVEP | 2018 |
[78] | OpenBCI | Statistical analysis | 50–92 | 4 | SSVEP | 2018 |
[79] | Emotiv EPOC | Statistical analysis | n/a | 30 | MI | 2017 |
[80] | Emotiv EPOC | ANN | 75 | - | MI | 2018 |
[81] | OpenBCI | Quadratic discrimination analysis | 83–90 | 1 | MI | 2018 |
[82] | OpenBCI | MLP NN | 64–85 | 7 | MI | 2018 |
[83] | OpenBCI | FLDA | 85–99 | 10 | Other | 2017 |
[84] | Emotiv EPOC+ | RF | 88–96 | 60 | Other | 2018 |
[85] | Emotiv EPOC+ | BLSTMLSTM | 94–98 | 60 | Other | 2018 |
[86] | OpenBCI | Statistical analysis | n/a | 3 | Other | 2019 |
[87] | OpenBCI | Statistical analysis | n/a | 20 | Other | 2020 |
Ref. | Product | Method | Accuracy (%) | Subject | Research Topic | Year |
---|---|---|---|---|---|---|
[94] | NeuroSky MindSet | SVM | 77 | 24 | Attention | 2013 |
[96] | NeuroSky MindSet | Questionnaire | n/a | 32 | Attention and meditation | 2014 |
[101] | NeuroSky MindSet | Questionnaire | n/a | 20 | Attention and meditation | 2014 |
[102] | NeuroSky MindSet | Questionnaire | n/a | 126 | Attention and meditation | 2014 |
[103] | NeuroSky MindSet | Statistical analysis | n/a | 5 | Attention and meditation | 2014 |
[100] | NeuroSky MindSet | Statistical analysis | n/a | 10 | Attention and meditation | 2015 |
[99] | NeuroSky MindSet | Questionnaire | n/a | 96 | Attention and meditation | 2016 |
[97] | NeuroSky MindSet | Questionnaire | n/a | 20 | Attention and meditation | 2016 |
[104] | NeuroSky * | Statistical analysis | n/a | 42 | Attention and meditation | 2016 |
[105] | NeuroSky MindWave Mobile | Questionnaire, interviews | n/a | 30 | Attention and meditation | 2016 |
[95] | NeuroSky MindWave | SVM | 75 | 10 | Attention and meditation | 2017 |
[100] | NeuroSky MindBand ** | Statistical analysis | n/a | 78 | Attention and meditation | 2017 |
[106] | NeuroSky MindWave | Post-test, interviews | n/a | 60 | Attention and meditation | 2017 |
[107] | NeuroSky * | Questionnaire | n/a | 44 | Attention and meditation | 2017 |
[108] | NeuroSky MindWave | Questionnaire | n/a | 60 | Attention and meditation | 2017 |
[109] | NeuroSky MindSet | Questionnaire, interviews | n/a | 20 | Attention and meditation | 2017 |
[110] | NeuroSky MindWave Mobile | Questionnaire, post-test | n/a | 80 | Attention and meditation | 2017 |
[111] | NeuroSky * | Pre-test, posttest | n/a | 148 | Attention and meditation | 2018 |
[112] | Emotiv EPOC | Questionnaire | n/a | 48 | Engagement time | 2014 |
[113] | Emotiv EPOC | Statistical analysis | n/a | 50 | Engagement time | 2016 |
[114] | Emotiv EPOC | Post-test | n/a | 12 | Brain-to-brain synchrony | 2017 |
[115] | Emotiv EPOC | Questionnaire | n/a | 12 | Brain-to-brain synchrony | 2019 |
[116] | Emotiv EPOC | Linear regression, kNN, SVM | 46–63 | 10 | Other | 2011 |
[117] | Emotiv EPOC | Statistical analysis | n/a | 40 | Games in education | 2015 |
[118] | OpenBCI | Statistical analysis | n/a | 22 | Other | 2018 |
[119] | Muse | Statistical analysis | n/a | 26 | Other | 2019 |
Reference | Product | Method | Accuracy (%) | Subject | Study | Year |
---|---|---|---|---|---|---|
[130] | Emotiv EPOC | Statistical analysis | n/a | 30 | Effects on neurofunction | 2015 |
[131] | Emotiv EPOC | Naive Bayes, SVM, MLP | 80–89 | 10 | Effects on neurofunction | 2016 |
[153] | NeuroSky MindWave Mobile | Questionnaire | n/a | 20 | Effects on neurofunction | 2016 |
[128] | Emotiv EPOC | Statistical analysis | n/a | 20 | Effects on neurofunction | 2016 |
[126] | Emotiv EPOC | Statistical analysis | n/a | 12 | Effects on neurofunction | 2016 |
[127] | Emotiv EPOC | Questionnaire | n/a | 10 | Effects on neurofunction | 2016 |
[122] | Emotiv EPOC | Statistical analysis | n/a | 80 | Effects on neurofunction | 2018 |
[123] | Emotiv EPOC | Statistical analysis | n/a | 15 | Effects on neurofunction | 2018 |
[124] | Emotiv EPOC | Naive Bayes, SVM, MLP | 82–86 | 20 | Effects on neurofunction | 2018 |
[132] | Emotiv EPOC | Questionnaire | n/a | 8 | Effects on neurofunction | 2018 |
[133] | NeuroSky MindWave Mobile | Post-test | n/a | 8 | Effects on neurofunction | 2018 |
[129] | Emotiv EPOC | Statistical analysis | n/a | 10 | Effects on neurofunction | 2019 |
[135] | NeuroSky MindWave Mobile | Statistical analysis | n/a | 16 | Brain-controlled game | 2018 |
[136] | Emotiv EPOC | Statistical analysis | n/a | 2 | Brain-controlled game | 2018 |
[134] | NeuroSky MindWave Mobile | Statistical analysis, Interviews | n/a | 8 | Brain-controlled game | 2019 |
[148] | Emotiv EPOC | Questionnaire | n/a | 3 | Neurological disorders | 2013 |
[137] | Muse | Statistical analysis | n/a | 577 | Neurological disorders | 2015 |
[125] | NeuroSky * | Questionnaire | n/a | 160 | Neurological disorders | 2015 |
[138] | NeuroSky MindWave | Statistical analysis | n/a | 9 | Neurological disorders | 2016 |
[139] | Emotiv EPOC | Statistical analysis | n/a | 5 | Neurological disorders | 2016 |
[140] | Emotiv EPOC | Statistical analysis | n/a | 107 | Neurological disorders | 2017 |
[141] | Emotiv EPOC | Statistical analysis | n/a | 9 | Neurological disorders | 2017 |
[147] | Emotiv EPOC | Statistical analysis | n/a | 8 | Neurological disorders | 2017 |
[142] | Emotiv EPOC | SVM | 98 | 5 | Neurological disorders | 2018 |
[143] | NeuroSky * | Statistical analysis | n/a | 174 | Neurological disorders | 2018 |
[144] | NeuroSky * | Statistical analysis | n/a | 43 | Neurological disorders | 2018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
TajDini, M.; Sokolov, V.; Kuzminykh, I.; Shiaeles, S.; Ghita, B. Wireless Sensors for Brain Activity—A Survey. Electronics 2020, 9, 2092. https://doi.org/10.3390/electronics9122092
TajDini M, Sokolov V, Kuzminykh I, Shiaeles S, Ghita B. Wireless Sensors for Brain Activity—A Survey. Electronics. 2020; 9(12):2092. https://doi.org/10.3390/electronics9122092
Chicago/Turabian StyleTajDini, Mahyar, Volodymyr Sokolov, Ievgeniia Kuzminykh, Stavros Shiaeles, and Bogdan Ghita. 2020. "Wireless Sensors for Brain Activity—A Survey" Electronics 9, no. 12: 2092. https://doi.org/10.3390/electronics9122092
APA StyleTajDini, M., Sokolov, V., Kuzminykh, I., Shiaeles, S., & Ghita, B. (2020). Wireless Sensors for Brain Activity—A Survey. Electronics, 9(12), 2092. https://doi.org/10.3390/electronics9122092