Hybrid Development of a Compact Antenna Based on a Novel Skin-Matched Ceramic Composite for Body Fat Measurement
Abstract
:1. Introduction
- (1)
- The high-dielectric and low-conductive composite materials were proposed and developed, such as VLF-440, TiO2, and their mixtures, which can be used in the other monitoring systems when operating on the body, to miniaturize the device, and to further minimize the mismatch effects, and consequently, improving the overall EM performance.
- (2)
- The skin-matched mixture of the 2 × VLF-440 and 1 × TiO2 with the low conductivity factor was developed and its dielectric properties were measured within the operating range (i.e., 0.3–3.3 GHz). The latter is also selected for the systems that aim to monitor inside the body.
- (3)
- The compact PDRH antenna was designed based on the full-wave finite integration technique (FIT) modeling, taking into account the measured properties of the skin-matched composite, to efficiently operate on the body in the frequency range of 0.9 GHz to 1.4 GHz, which further resulted in the improved range resolution and penetration depth.
2. Composite Materials Development and Characterization
3. Antenna Design and Evaluation
3.1. Microwave Antenna Design and Analysis
3.2. System Evaluation Using the Abdominal Tissue Model
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ford, N.D.; Patel, S.A.; Narayan, K.V. Obesity in Low- and Middle-Income Countries: Burden, Drivers, and Emerging Challenges. Annu. Rev. Public Health 2017, 38, 145–164. [Google Scholar] [CrossRef] [Green Version]
- Canoy, D.; Boekholdt, S.M.; Wareham, N.; Luben, R.; Welch, A.; Bingham, S.; Buchan, I.; Day, N.; Khaw, K.-T. Body fat distribution and risk of coronary heart disease in men and women in the European Prospective Investigation into Cancer and Nutrition in Norfolk cohort: A population-based prospective study. Circulation 2007, 116, 2933–2943. [Google Scholar] [CrossRef] [Green Version]
- Saito, Y.; Takahashi, O.; Arioka, H.; Kobayashi, D. Associations between body fat variability and later onset of cardiovascular disease risk factors. PLoS ONE 2017, 12, e0175057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Pergola, G.; Silvestris, F. Obesity as a Major Risk Factor for Cancer. J. Obes. 2013, 2013, 291546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, M.S.; Sendra, S.; Lloret, J.; Bosch, I. Systems and WBANs for Controlling Obesity. J. Health Eng. 2018, 2018, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Bray, G.A.; Heisel, W.E.; Afshin, A.; Jensen, M.D.; Dietz, W.H.; Long, M.; Kushner, R.F.; Daniels, S.R.; Wadden, T.A.; Tsai, A.G.; et al. The Science of Obesity Management: An Endocrine Society Scientific Statement. Endocr. Rev. 2018, 39, 79–132. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Vélez, R.; Correa-Bautista, J.E.; Martínez-Torres, J.; Meneses-Echavez, J.F.; González-Ruíz, K.; González-Jiménez, E.; Schmidt-RioValle, J.; Lobelo, F. LMS tables for waist circumference and waist–height ratio in Colombian adults: Analysis of nationwide data 2010. Eur. J. Clin. Nutr. 2016, 70, 1189–1196. [Google Scholar] [CrossRef] [PubMed]
- Staten, M.A.; Totty, W.G.; Kohrt, W.M. Original Investigations Measurement of Fat Distribution by Magnetic Resonance Imaging. Investig. Radiol. 1989, 24, 345–349. [Google Scholar] [CrossRef]
- Omar, A.; Caverly, R.; Doherty, W.; Watkins, R.; Gopinath, A.; Vaughan, J.T. A Microwave Engineer’s View of MRI. IEEE Microw. Mag. 2011, 12, 78–86. [Google Scholar] [CrossRef]
- Caverly, R.H. RF Aspects of High-Field Magnetic Resonance Imaging (HF-MRI): Recent Advances. IEEE J. Electromagn. RF Microwaves Med. Biol. 2019, 3, 111–119. [Google Scholar] [CrossRef]
- Yoshizumi, T.; Nakamura, T.; Yamane, M.; Islam, A.H.M.W.; Menju, M.; Yamasaki, K.; Arai, T.; Kotani, K.; Funahashi, T.; Yamashita, S.; et al. Abdominal Fat: Standardized Technique for Measurement at CT. Radiology 1999, 211, 283–286. [Google Scholar] [CrossRef]
- Jensen, M.D.; Kanaley, J.A.; Reed, J.E.; Sheedy, P.F. Measurement of abdominal and visceral fat with computed tomography and dual-energy x-ray absorptiometry. Am. J. Clin. Nutr. 1995, 61, 274–278. [Google Scholar] [CrossRef]
- Atta, H.R. Ophthalmic Ultrasound: A Practical Guide; Churchill Livingstone: Edinburgh, UK, 1996. [Google Scholar]
- Kletsov, A.; Druchinin, S.; Khripkov, A.; Cho, J.; Chernokalov, A. Microwave non-contact imaging of subcutaneous human body tissues. Health Technol. Lett. 2015, 2, 108–111. [Google Scholar] [CrossRef] [Green Version]
- Bahramiabarghouei, H.; Porter, E.; Santorelli, A.; Gosselin, B.; Popovic, M.; Rusch, L.A. Flexible 16 Antenna Array for Microwave Breast Cancer Detection. IEEE Trans. Biomed. Eng. 2015, 62, 2516–2525. [Google Scholar] [CrossRef]
- Federal Communications Commission. Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems; FCC-10-151; Federal Communications Commission: Washington, DC, USA, 2010.
- Walton, K.; Sundberg, V. Broadband ridged horn design. Microwave J. 1964, 4, 96–101. [Google Scholar]
- Bruns, C.; Leuchtmann, P.; Vahldieck, R. Analysis and simulation of a 1–18-GHz broadband double-ridged horn antenna. IEEE Trans. Electromagn. Compat. 2003, 45, 55–60. [Google Scholar] [CrossRef]
- Cohn, S. Properties of Ridge Wave Guide. Proc. IRE 1947, 35, 783–788. [Google Scholar] [CrossRef]
- Hilger, I.; Dahlke, K.; Rimkus, G.; Geyer, C.; Seifert, F.; Kosch, O.; Thiel, F.; Hein, M.; di Clemente, F.S.; Schwarz, U.; et al. ultraMEDIS–ultra-wideband sensing in medicine. In Ultra-Wideband Radio Technologies for Communications, Localization and Sensor Applications; IntechOpen: Rijeka, Croatia, 2013. [Google Scholar]
- Latif, S.I.; Shafai, L.; Pistorius, S.; Flores-Tapia, D. Design and performance analysis of the miniaturised water-filled double-ridged horn antenna for active microwave imaging applications. IET Microwaves Antennas Propag. 2015, 9, 1173–1178. [Google Scholar] [CrossRef]
- Latif, S.; Flores-Tapia, D.; Herrera, D.R.; Nepote, M.S.; Pistorius, S.; Shafai, L. A Directional Antenna in a Matching Liquid for Microwave Radar Imaging. Int. J. Antennas Propag. 2015, 2015, 751739. [Google Scholar] [CrossRef] [Green Version]
- Sarjoghian, S.; Sagor, H.; Alfadhl, Y.; Chen, X. A 3D-Printed High-Dielectric Filled Elliptical Double-Ridged Horn Antenna for Biomedical Monitoring Applications. IEEE Access 2019, 7, 94977–94985. [Google Scholar] [CrossRef]
- Yu, C.; Zeng, Y.; Yang, B.; Donnan, R.; Huang, J.; Xiong, Z.; Mahajan, A.; Shi, B.; Ye, H.; Binions, R.; et al. Titanium Dioxide Engineered for Near-dispersionless High Terahertz Permittivity and Ultra-low-loss. Sci. Rep. 2017, 7, 6639. [Google Scholar] [CrossRef] [Green Version]
- Marinel, S.; Choi, D.H.; Heuguet, R.; Agrawal, D.; Lanagan, M. Broadband dielectric characterization of TiO2 ceramics sintered through microwave and conventional processes. Ceram. Int. 2013, 39, 299–306. [Google Scholar] [CrossRef]
- Wypych, A.; Bobowska, I.; Tracz, M.; Opasinska, A.; Kadlubowski, S.; Krzywania-Kaliszewska, A.; Grobelny, J.; Wojciechowski, P. Dielectric Properties and Characterisation of Titanium Dioxide Obtained by Different Chemistry Methods. J. Nanomater. 2014, 2014, 124814. [Google Scholar] [CrossRef]
- Aimoto, A.; Matsumoto, T. Noninvasive method for measuring the electrical properties of deep tissues using an open-ended coaxial probe. Med. Eng. Phys. 1996, 18, 641–646. [Google Scholar] [CrossRef]
- Alanen, E.; Lahtinen, T.; Nuutinen, J. Measurement of dielectric properties of subcutaneous fat with open-ended coaxial sensors. Phys. Med. Biol. 1998, 43, 475–485. [Google Scholar] [CrossRef]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 1996, 41, 2271–2293. [Google Scholar] [CrossRef] [Green Version]
- Ibrani, M.; Ahma, L.; Hamiti, E. The Age-Dependence of Microwave Dielectric Parameters of Biological Tissues. In Microwave Materials Characterization; IntechOpen: Rijeka, Croatia, 2012; pp. 139–158. [Google Scholar]
- Li, X.; Jalilvand, M.; Sit, Y.L.; Zwick, T. A Compact Double-Layer On-Body Matched Bowtie Antenna for Medical Diagnosis. IEEE Trans. Antennas Propag. 2014, 62, 1808–1816. [Google Scholar] [CrossRef]
- Nadir, H.; Gharzouni, A.; Martinod, E.; Feix, N.; Tantot, O.; Bertrand, V.; Rossignol, S.; Lalande, M. Small form factor UWB antenna integrating geopolymer dielectric material. IET Microwaves Antennas Propag. 2019, 13, 2146–2152. [Google Scholar] [CrossRef]
- Balanis, A. Antenna Theory: Analysis and Design, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Mallahzadeh, A.R.; Dastranj, A.A.; Hassani, H.R. A Novel Dual-Polarized Double-Ridged Horn Antenna for Wideband Applications. Prog. Electromagn. Res. B 2008, 1, 67–80. [Google Scholar] [CrossRef] [Green Version]
- Sarjoghian, S.; Alfadhl, Y.; Chen, X.; Parini, C.G. A 3D-Printed High-Dielectric Materials-Filled Pyramidal Double-Ridged Horn Antenna for Abdominal Fat Measurement System. IEEE Trans. Antennas Propag. 2020, 1. [Google Scholar] [CrossRef]
- Sarjoghian, S. Design and evaluation of microwave antennas for abdominal fat measurement systems. Ph.D. Thesis, School of Electronic Engineering and Computer Science, Queen Mary, University of London, London, UK, 2019. [Google Scholar]
(1) 20 to 300 °C at 0.1 °C/min | (2) 300 to 400 °C at 0.3 °C/min |
(3) 400 to 985 °C at 10 °C/min | (4) 985 °C and hold for 5 h |
(5) 985 to 20 °C at 5 °C/min |
Dielectric Material | Frequency (GHz) | Relative Permittivity | Conductivity (S/m) |
---|---|---|---|
VLF-440 | 1.0 | 27.4 | 0.008 |
TiO2 | 1.0 | 84.7 | 0.016 |
VLF-440 (1) + TiO2 (1) | 1.0 | 53.5 | 0.02 |
VLF-440 (4) + TiO2 (1) | 1.0 | 37.2 | 0.012 |
VLF-440 (2) + TiO2 (1) | 1.0 | 44.2 | 0.013 |
Environment | Connector | Antenna | Tissue | Tissue |
Material | Teflon | Ceramic | Skin | Fat |
Permittivity | 2.1 | 44 | 44 | 10 |
Length [l] (mm) | 10 | 31 | 2.0 | 10 |
Velocity [v] (m/s) | 207,019 | 452,267 | 452,267 | 948,683 |
Time [t] (ns) | 0.096 | 1.371 | 0.088 | 0.211 |
Fat Thickness (mm) | Time (ns) | Amplitude (v) |
---|---|---|
10 | 6.17 | 0.19 |
15 | 6.19 | 0.28 |
20 | 6.20 | 0.33 |
25 | 6.22 | 0.36 |
30 | 6.23 | 0.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarjoghian, S.; Rahimian, A.; Alfadhl, Y.; Saunders, T.G.; Liu, J.; Parini, C.G. Hybrid Development of a Compact Antenna Based on a Novel Skin-Matched Ceramic Composite for Body Fat Measurement. Electronics 2020, 9, 2139. https://doi.org/10.3390/electronics9122139
Sarjoghian S, Rahimian A, Alfadhl Y, Saunders TG, Liu J, Parini CG. Hybrid Development of a Compact Antenna Based on a Novel Skin-Matched Ceramic Composite for Body Fat Measurement. Electronics. 2020; 9(12):2139. https://doi.org/10.3390/electronics9122139
Chicago/Turabian StyleSarjoghian, Siamak, Ardavan Rahimian, Yasir Alfadhl, Theo G. Saunders, Jiamin Liu, and Clive G. Parini. 2020. "Hybrid Development of a Compact Antenna Based on a Novel Skin-Matched Ceramic Composite for Body Fat Measurement" Electronics 9, no. 12: 2139. https://doi.org/10.3390/electronics9122139
APA StyleSarjoghian, S., Rahimian, A., Alfadhl, Y., Saunders, T. G., Liu, J., & Parini, C. G. (2020). Hybrid Development of a Compact Antenna Based on a Novel Skin-Matched Ceramic Composite for Body Fat Measurement. Electronics, 9(12), 2139. https://doi.org/10.3390/electronics9122139