Real-Time Mode Switching and Beam Scanning of High-Gain OAM Waves Using a 1-Bit Reconfigurable Reflectarray Antenna
Abstract
:1. Introduction
2. Design and Analysis
2.1. Design of a Reflectarray Surface for OAM
2.2. Configuration and Responses of the 1-Bit Element
2.3. Realization of Different OAM Beams
3. Measurement and Discussion
3.1. Prototype of the Antenna and Experimental Environment
3.2. Mode Switching of the OAM Beam
3.3. Large-Angle Beam Scanning of OAM Wave
3.4. Performance Comparison
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thidé, B.; Tamburini, F.; Then, H.; Someda, C.G.; Ravanelli, R.A. The physics of angular momentum raido. In Proceedings of the 1st URSI Atlantic Radio Science Conference, Gran Canaria, Spain, 16–24 May 2015. [Google Scholar]
- Poynting, J.H. On Pressure Perpendicular to the Shear Planes in Finite Pure Shears, and on the Lengthening of Loaded Wires When Twisted. Proc. R. Soc. A Math. Phys. Eng. Sci. 1909, 82, 546. [Google Scholar]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J. Orbital angular momentum of light and transformation of Laguerre Gaussian Laser modes. Phys. Rev. A 1992, 45, 8185. [Google Scholar] [CrossRef] [PubMed]
- Bretschneider, S.; Eggeling, C.; Hell, S.W. Breaking the Diffraction Barrier in Fluorescence Microscopy by Optical Shelving. Phys. Rev. Lett. 2007, 98, 218103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, S.L.; Hui, X.N.; Zhu, J.B.; Chi, H.; Jin, X.F.; Yu, S.Y.; Zhang, X.M. Orbital angular momentum mode-demultiplexing scheme with partial angular receiving aperture. Opt. Lett. 2015, 23, 12251. [Google Scholar] [CrossRef] [PubMed]
- Franke, S.; Allen, L.; Padgett, M. Advances in optical angular momentum. Laser Photonics Rev. 2010, 2, 299. [Google Scholar] [CrossRef]
- Chen, M.Z.; Michael, M.; Arita, Y.; Wright, E.; Dholakia, K. Dynamics of microparticles trapped in a perfect vortex beam. Opt. Lett. 2013, 15, 4919. [Google Scholar] [CrossRef]
- Grier, D.G. A revolution in optical manipulation. Nature 2003, 424, 810. [Google Scholar] [CrossRef]
- Skarka, V.; Aleksi, N.B.; Berezhiani, V.I. Evolution of singular optical pulses towards vortex solitons and filamentation in air. Phys. Lett. A 2003, 319, 317. [Google Scholar] [CrossRef]
- Oemrawsingh, S.S.R.; Aiello, A.; Eliel, E.R.; Nienhuis, G.; Woerdman, J.P. How to Observe High-Dimensional Two-Photon Entanglement with Only Two Detectors. Phys. Rev. Lett. 2004, 92, 217901. [Google Scholar] [CrossRef] [Green Version]
- Thidé, B.; Then, H.; Sjöholm, J.; Palmer, K.; Bergman, J.; Carozzi, T.D.; Istomin, Y.N.; Ibragimov, N.H.; Khamitova, R. Utilization of Photon Orbital Angular Momentum in the Low-Frequency Radio Domain. Phys. Rev. Lett. 2007, 99, 087701. [Google Scholar]
- Tamburini, F.; Mari, E.; Thidé, B.; Barbieri, C.; Romanato, F. Experimental verification of photon angular momentum and vorticity with radio techniques. Appl. Phys. Lett. 2011, 99, 204102. [Google Scholar] [CrossRef]
- Tamburini, F.; Mari, E.; Sponselli, A.; Thidé, B.; Bianchini, A.; Romanato, F. Encoding many channels in the same frequency through radio vorticity: First experimental test. New J. Phys. 2012, 14, 33001. [Google Scholar] [CrossRef]
- Niemiec, R.; Brousseau, C.; Mahdjoubi, K.; Emile, O.; Ménard, A. Characterization of an OAM Flat Plate Antenna in the Millimeter Frequency Band. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1011. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, S.L.; Hui, X.N.; Chen, Y.L.; Jin, X.F.; Chi, H.; Zhang, X.M. Four-OAM-mode Antenna with Traveling-wave Ring-slot Structure. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 194. [Google Scholar] [CrossRef]
- Liu, B.Y.; Cui, Y.H.; Li, R.L. A Broadband Dual-Polarized Dual-OAM-Mode Antenna Array for OAM Communication. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 744. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, Z.N.; Liu, Y.; Li, F.; Chen, Y.; Mo, Z. Circular Polarization and Mode Reconfigurable Wideband Orbital Angular Momentum Patch Array Antenna. IEEE Trans. Antennas Propag. 2018, 66, 1796–1804. [Google Scholar] [CrossRef]
- Ren, J.; Leung, K.W. Generation of microwave orbital angular momentum states using hemispherical dielectric resonator antenna. Appl. Phys. Lett. 2018, 112, 131103. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Z.; Wang, S.; Zhou, Q.; Shen, F.; Jiang, H.; Wu, Z.; Zeng, B.; Guo, Z.; Gong, Y. Designing a Water-Immersed Rectangular Horn Antenna for Generating Underwater OAM Waves. Electronics 2019, 8, 1224. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chen, H.; Guo, K.; Shen, F.; Guo, Z. An Inner- and Outer-Fed Dual-Arm Archimedean Spiral Antenna for Generating Multiple Orbital Angular Momentum Modes. Electronics 2019, 8, 251. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.X.; Li, L.; Shi, G.M.; Zhu, C.; Zhou, X.X.; Shi, Y. Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain. Appl. Phys. Lett. 2016, 108, 121903. [Google Scholar] [CrossRef]
- Yu, S.X.; Li, L.; Shi, G. Dual-polarization and dual-mode orbital angular momentum radio vortex beam generated by using reflective metasurface. Appl. Phys. Lett. 2016, 9, 082202. [Google Scholar] [CrossRef]
- Meng, X.S.; Wu, J.J.; Wu, Z.S.; Qu, T.; Yang, L. Dual-polarized reflectarray for generating dual beams with two different orbital angular momentum modes based on independent feeds in C-and X-bands. Opt. Express 2018, 26, 23185. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.S.; Wu, J.J.; Wu, Z.S.; Qu, T.; Yang, L. Design of multiple-polarization reflectarray for orbital angular momentum wave in radio frequency. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2269. [Google Scholar] [CrossRef]
- Yu, S.; Li, L.; Shi, G.; Zhu, C.; Shi, Y. Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain. Appl. Phys. Lett. 2016, 108, 241901. [Google Scholar] [CrossRef]
- Akram, Z.; Li, X.P.; Qi, Z.H.; Aziz, A.; Jiang, X.; Li, X.M. Broadband High-order OAM Reflective Metasurface with High Mode Purity Using Subwavelength Element and Circular Aperture. IEEE Access 2019, 7, 71963. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, C.; Zhang, H.; Chen, W. Achromatic electromagnetic metasurface for generating a vortex wave with orbital angular momentum (OAM). Opt. Express 2018, 26, 6466. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.S.; Wu, J.J.; Wu, Z.S.; Yang, L.; Huang, L.; Li, X.; Qu, T. Design, fabrication, and measurement of an anisotropic holographic metasurface for generating vortex beams carrying orbital angular momentum. Opt. Lett. 2019, 44, 1452. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, C.; Ma, H.F.; Zhao, J.; Dai, J.Y.; Yuan, W.; Yang, L.X.; Cheng, Q.; Cui, T.J. Generation of radio vortex beams with designable polarization using anisotropic frequency selective surface. Appl. Phys. Lett. 2018, 112, 203501. [Google Scholar] [CrossRef]
- Yang, H.; Yang, F.; Xu, S.H.; Li, M.K.; Cao, X.Y.; Gao, J. A 1-Bit Multi-Polarization Reflectarray Element for Reconfigurable Large Aperture Antennas. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 581. [Google Scholar] [CrossRef]
- Yang, H.; Yang, F.; Cao, X.; Xu, S.; Gao, J.; Chen, X.; Li, M.; Li, T. A 1600-Element Dual-Frequency Electronically Reconfigurable Reflectarray at X/Ku Bands. IEEE Trans. Antennas Propag. 2017, 65, 3024. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, S.H.; Yang, F.; Werner, D.H. 1-Bit Dual-Linear Polarized Reconfigurable Transmitarray Antenna Using Asymmetric Dipole Elements with Parasitic Bypass Dipoles. IEEE Trans. Antennas Propag. 2020. early access. [Google Scholar]
- Nguyen, B.D.; Pichot, C. Unit-Cell Loaded with PIN Diodes for 1-Bit Linearly Polarized Reconfigurable Transmittarrays. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 98–102. [Google Scholar] [CrossRef]
- Palma, L.D.; Clemente, A.; Dussopt, L.; Sauleau, R.; Potier, P.; Pouliguen, P. 1-Bit Reconfigurable Unit Cell for ka-Band Transmitarrays. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 560. [Google Scholar] [CrossRef]
- Huang, C.; Pan, W.; Ma, X.; Zhao, B.; Cui, J.; Luo, X. Using Reconfigurable Transmitarray to Achieve Beam-Steering and Polarization Manipulation Applications. IEEE Trans. Antennas Propag. 2015, 63, 4801. [Google Scholar] [CrossRef]
- Han, J.Q.; Li, L.; Yi, H.; Shi, Y. 1-bit digital orbit angular momentum vortex beam generator based on a coding reflective metasurface. Opt. Mater. Express 2018, 8, 3470. [Google Scholar] [CrossRef]
- Han, J.Q.; Li, L.; Yi, H.; Xue, W.M. Versatile orbital angular momentum vortex beam generator based on reconfigurable reflective metasurface. Jpn. J. Appl. Phys. 2018, 57, 120303. [Google Scholar] [CrossRef]
- Bai, X.D.; Kong, F.W.; Sun, Y.T.; Wang, G.F.; Qian, J.Y.; Li, X.B.; Cao, A.J.; He, C.; Liang, X.L.; Jin, R.H.; et al. High efficiency Transmissive Programmable Metasurface for Multimode OAM Generation. Adv. Opt. Mater. 2020, 45, 2000570. [Google Scholar] [CrossRef]
Parameter | 0° | 15° | 30° | 45° | 60° |
---|---|---|---|---|---|
Gain(dBi) | 27.2 | 26.26 | 25.48 | 23.32 | 20.70 |
Ref | Type | Frequency (GHz) | OAM Mode | Mode Switching | OAM Beam Scanning | Gain(dBi) |
---|---|---|---|---|---|---|
[17] | UCA | 2.5 | +1/−1 | Yes(CP + Mode) | No | 5.3 |
[24] | RA | 10 | +1 | Yes (CP/LP) | No | Not Given |
[36] | RRA | 4.75 | +1/+2 | Yes | No | Not Given |
[38] | RTA | 7.5 | ±1/±2/0 | Yes | No | Not Given |
This Paper | RRA | 9.37 | 0/±1 | Yes | Yes | 27.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Pan, X.; Yang, F.; Xu, S.; Li, M. Real-Time Mode Switching and Beam Scanning of High-Gain OAM Waves Using a 1-Bit Reconfigurable Reflectarray Antenna. Electronics 2020, 9, 2181. https://doi.org/10.3390/electronics9122181
Wang Z, Pan X, Yang F, Xu S, Li M. Real-Time Mode Switching and Beam Scanning of High-Gain OAM Waves Using a 1-Bit Reconfigurable Reflectarray Antenna. Electronics. 2020; 9(12):2181. https://doi.org/10.3390/electronics9122181
Chicago/Turabian StyleWang, Ziyang, Xiaotian Pan, Fan Yang, Shenheng Xu, and Maokun Li. 2020. "Real-Time Mode Switching and Beam Scanning of High-Gain OAM Waves Using a 1-Bit Reconfigurable Reflectarray Antenna" Electronics 9, no. 12: 2181. https://doi.org/10.3390/electronics9122181
APA StyleWang, Z., Pan, X., Yang, F., Xu, S., & Li, M. (2020). Real-Time Mode Switching and Beam Scanning of High-Gain OAM Waves Using a 1-Bit Reconfigurable Reflectarray Antenna. Electronics, 9(12), 2181. https://doi.org/10.3390/electronics9122181