EEG Feature Extraction Based on a Bilevel Network: Minimum Spanning Tree and Regional Network
Abstract
:1. Introduction
- We attempt to introduce MST to the MI-BCI research and improve the classification performance.
- Our proposed bilevel network framework is simple, effective, and has extensive interpretability.
- We demonstrate the superiority of our method in the BCI Competition IV Dataset I.
2. Materials and Methods
2.1. Overview
2.2. Motivation
2.3. EEG Signal Features
2.3.1. MST Features
Algorithm1 Kruskal (Figure 2) |
1: Initialize two sets, and . is the set of nodes and is the set of edges. |
2: Create a graph . |
3: Sort according to the weight of edges. |
4: while the num of edges in the size of do |
5: Select , so that is the edge with the smallest weight. |
6: if node directly reaches node then |
7: Add and nodes and into the graph. |
8: Remove from . |
9: end if |
10: end while |
2.3.2. Regional Network Features
2.4. Feature Fusion
2.5. Experimental Scheme
2.6. EEG Data Preprocessing
2.7. Feature Classification with SVM
3. Results
3.1. MST in Different Movements
3.2. Regional Network in Different Movements
3.3. Classification
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Belwafi, K.; Gannouni, S.; Aboalsamh, H.; Mathkour, H.; Belghith, A. A dynamic and self-adaptive classification algorithm for motor imagery EEG signals. J. Neurosci. Methods 2019, 327. [Google Scholar] [CrossRef]
- Allen, E.A.; Damaraju, E.; Eichele, T.; Wu, L.; Calhoun, V.D. EEG Signatures of Dynamic Functional Network Connectivity States. Brain Topogr. 2018, 31, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.Y.; Chan, K.C.C. Fuzzy Feature Extraction for Multichannel EEG Classification. IEEE Trans. Cogn. Dev. Syst. 2018, 10, 267–279. [Google Scholar] [CrossRef]
- Hamada, M.; Zaidan, B.B.; Zaidan, A.A. A Systematic Review for Human EEG Brain Signals Based Emotion Classification, Feature Extraction, Brain Condition, Group Comparison. J. Med. Syst. 2018, 42, 25. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.Y.; Wang, T.; Wang, Q.; Zhu, Q.; Chen, J.H. EEG Signal Processing Based on Multivariate Empirical Mode Decomposition and Common Spatial Pattern Hybrid Algorithm. Int. J. Pattern Recognit. Artif. Intell. 2019, 33, 16. [Google Scholar] [CrossRef]
- Durongbhan, P.; Zhao, Y.F.; Chen, L.Y.; Zis, P.; De Marco, M.; Unwin, Z.C.; Sarrigiannis, P.G. A Dementia Classification Framework Using Frequency and Time-Frequency Features Based on EEG Signals. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 826–835. [Google Scholar] [CrossRef] [Green Version]
- Bassett, D.S.; Khambhati, A.N. A network engineering perspective on probing and perturbing cognition with neurofeedback. Ann. N. Y. Acad. Sci. 2017, 1396, 126–143. [Google Scholar] [CrossRef] [Green Version]
- Buch, V.P.; Richardson, A.G.; Brandon, C.; Stiso, J.; Khattak, M.N.; Bassett, D.S.; Lucas, T.H. Network Brain-Computer Interface (nBCI): An Alternative Approach for Cognitive Prosthetics. Front. Neurosci. 2018, 12, 790. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Yan, P.P.; Cheng, C.; Li, Y.; Chen, J.J.; Xu, Y.; Xiang, J. fMRI classification method with multiple feature fusion based on minimum spanning tree analysis. Psychiatry Res. Neuroimaging 2018, 277, 14–27. [Google Scholar] [CrossRef]
- Sporns, O.; Tononi, G.; Kotter, R. The human connectome: A structural description of the human brain. PLoS Comput. Biol. 2005, 1, 245–251. [Google Scholar] [CrossRef]
- Zhang, X.; Lei, X.; Wu, T.; Jiang, T.Z. A review of EEG and MEG for brainnetome research. Cogn. Neurodyn. 2014, 8, 87–98. [Google Scholar] [CrossRef] [Green Version]
- Stanley, M.L.; Simpson, S.L.; Dagenbach, D.; Lyday, R.G.; Burdette, J.H.; Laurienti, P.J. Changes in Brain Network Efficiency and Working Memory Performance in Aging. PLoS ONE 2015, 10, e0123950. [Google Scholar] [CrossRef]
- Kong, W.; Guo, X.; Zhao, X.; Wei, D.; Hu, S.; Dai, G. Spectral analysis of brain function network for the classification of motor imagery tasks. In Proceedings of the International Conference on Biomedical Engineering & Informatics, Datong, China, 15–17 October 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Van Straaten, E.C.W.; Stam, C.J. Structure out of chaos: Functional brain network analysis with EEG, MEG, and functional MRI. Eur. Neuropsychopharmacol. 2013, 23, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Miao, L.W.; Niu, Y.; Cao, R.; Li, D.D.; Yan, P.F.; Xiang, J. Abnormal Functional Brain Networks in Mild Cognitive Impairment and Alzheimer’s Disease: A Minimum Spanning Tree Analysis. J. Alzheimers Dis. 2018, 65, 1093–1107. [Google Scholar] [CrossRef]
- Tewarie, P.; Van Dellen, E.; Hillebrand, A.; Stam, C.J. The minimum spanning tree: An unbiased method for brain network analysis. Neuroimage 2015, 104, 177–188. [Google Scholar] [CrossRef]
- Kruskal, J.B. On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 1956, 7, 48. [Google Scholar] [CrossRef]
- Li, X.W.; Jing, Z.A.; Bin, H.; Zhu, J.; Zhong, N.; Li, M.; Majoe, D. A Resting-State Brain Functional Network Study in MDD Based on Minimum Spanning Tree Analysis and the Hierarchical Clustering. Complexity 2017, 2017, 1–11. [Google Scholar] [CrossRef]
- Tewarie, P.; Hillebrand, A.; Schoonheim, M.M.; Van Dijk, B.W.; Geurts, J.J.G.; Barkhof, F.; Stam, C.J. Functional brain network analysis using minimum spanning trees in Multiple Sclerosis: An MEG source-space study. Neuroimage 2014, 88, 308–318. [Google Scholar] [CrossRef]
- Lee, U.V.; Kim, S.; Jung, K.Y. Classification of epilepsy types through global network analysis of scalp electroencephalograms. Phys. Rev. E 2006, 73, 9. [Google Scholar] [CrossRef]
- Dubbelink, K.T.E.O.; Stoffers, D.; Deijen, J.B.; Twisk, J.W.R.; Stam, C.J.; Hillebrand, A.; Berendse, H.W. Resting-state functional connectivity as a marker of disease progression in Parkinson’s disease: A longitudinal MEG study. Neuroimage Clin. 2013, 2, 612–619. [Google Scholar] [CrossRef] [Green Version]
- Demuru, M.; Fara, F.; Fraschini, M. Brain network analysis of EEG functional connectivity during imagery hand movements. J. Integr. Neurosci. 2013, 12, 441–447. [Google Scholar] [CrossRef]
- Wang, F.W.; Zhang, X.L.; Fu, R.R.; Sun, G.B. EEG characteristic analysis of coach bus drivers based on brain connectivity as revealed via a graph theoretical network. RSC Adv. 2018, 8, 29745–29755. [Google Scholar] [CrossRef] [Green Version]
- Stam, C.J.; Tewarie, P.; Van Dellen, E.; Van Straaten, E.C.W.; Hillebrand, A.; Van Mieghem, P. The trees and the forest: Characterization of complex brain networks with minimum spanning trees. Int. J. Psychophysiol. 2014, 92, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Yi, W.B.; Qiu, S.; Qi, H.Z.; Zhang, L.X.; Wan, B.K.; Ming, D. EEG feature comparison and classification of simple and compound limb motor imagery. J. Neuroeng. Rehabil. 2013, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- Nagamori, S.; Tanaka, H. Analysis Method for ERD in Mu-rhythm Detection in Motor Imagery Brain-Computer Interface. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics, Budapest, Hungary, 9–12 October 2016; IEEE: New York, NY, USA, 2016; pp. 867–870. [Google Scholar]
- Sporns, O. Structure and function of complex brain networks. Dialogues Clin. Neurosci. 2013, 15, 247–262. [Google Scholar]
- Li, X.; Fan, H.; Wang, H.; Wang, L. Common spatial patterns combined with phase synchronization information for classification of EEG signals. Biomed. Signal Process. Control 2019, 52, 248–256. [Google Scholar] [CrossRef]
- Corsi, M.C.; Chavez, M.; Schwartz, D.; Hugueville, L.; Khambhati, A.N.; Bassett, D.S.; Fallani, F.D. Integrating EEG and MEG Signals to Improve Motor Imagery Classification in Brain-Computer Interface. Int. J. Neural Syst. 2019, 29, 12. [Google Scholar] [CrossRef]
- Leeb, R.; Sagha, H.; Chavarriaga, R.; Millan, J.D. Multimodal Fusion of Muscle and Brain Signals for a Hybrid-BCI. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Buenos Aire, Argentina, 30 August–4 September 2010; IEEE: New York, NY, USA, 2010; pp. 4343–4346. [Google Scholar]
- Muller-Putz, G.; Leeb, R.; Tangermann, M.; Hohne, J.; Kubler, A.; Cincotti, F.; Millan, J.D. Towards Noninvasive Hybrid Brain-Computer Interfaces: Framework, Practice, Clinical Application, and Beyond. Proc. IEEE 2015, 103, 926–943. [Google Scholar] [CrossRef]
- BCI Competition IV. Available online: http://www.bbci.de/competition/ (accessed on 18 January 2020).
- Pineda, J.A. The functional significance of mu rhythms: Translating “seeing” and “hearing” into “doing”. Brain Res. Rev. 2005, 50, 57–68. [Google Scholar] [CrossRef]
- Lapenta, O.M.; Boggio, P.S. Motor network activation during human action observation and imagery: Mu rhythm EEG evidence on typical and atypical neurodevelopment. Res. Autism Spectr. Disord. 2014, 8, 759–766. [Google Scholar] [CrossRef]
- Burges, C.J.C. A tutorial on support vector machines for pattern recognition. Datamining Knowl. Discov. 1998, 2, 121–167. [Google Scholar] [CrossRef]
- Ehrsson, H.H.; Fagergren, A.; Jonsson, T.; Westling, G.; Johansson, R.S.; Forssberg, H. Cortical activity in precision- versus power-grip tasks: An fMRI study. J. Neurophysiol. 2000, 83, 528–536. [Google Scholar] [CrossRef]
- Zhang, L.H.; Wang, B.Z.; Hong, J.; Li, T. The Analysis of Decoding Parameter Selection of Hand Movements Based on Brain Function Network. In Proceedings of the 2015 12th International Conference on Ubiquitous Robots and Ambient Intelligence, Goyang, Korea, 28–30 October 2015; IEEE: New York, NY, USA, 2015; pp. 587–592. [Google Scholar]
- Kumar, S.; Sharma, A.; Tsunoda, T. An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information. BMC Bioinform. 2017, 18, 13. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.H.; Chin, Z.Y.; Ang, K.K.; Guan, C.T.; Wang, C.C. Optimum Spatio-Spectral Filtering Network for Brain-Computer Interface. IEEE Trans. Neural Netw. 2011, 22, 52–63. [Google Scholar] [CrossRef]
- Zhao, Y.W.; Han, J.Q.; Chen, Y.S.; Sun, H.J.; Chen, J.Y.; Ke, A.; Wang, C.Y. Improving Generalization Based on l(1)-Norm Regularization for EEG-Based Motor Imagery Classification. Front. Neurosci. 2018, 12, 16. [Google Scholar] [CrossRef] [Green Version]
Subject | MI | p-Value | |||
---|---|---|---|---|---|
MST | RN | SC | BF | ||
a | Left hand/Foot | 0.031 | 0.026 | <0.01 | <0.01 |
b | Left/Right hand | 0.024 | 0.018 | <0.01 | <0.01 |
c | Left/Right hand | 0.020 | 0.019 | <0.01 | <0.01 |
d | Left/Right hand | 0.019 | 0.015 | <0.01 | <0.01 |
e | Left/Right hand | 0.027 | 0.011 | <0.01 | <0.01 |
f | Left hand/Foot | 0.038 | 0.033 | <0.01 | <0.01 |
g | Left/Right hand | 0.023 | 0.012 | <0.01 | <0.01 |
Subject | MI | Features | |||
---|---|---|---|---|---|
MST | RN | SC | BF | ||
a | Left hand/Foot | 69.32 | 71.86 | 83.96 | 86.24 |
b | Left/Right hand | 72.34 | 77.48 | 87.24 | 88.31 |
c | Left/Right hand | 77.86 | 80.16 | 91.34 | 92.89 |
d | Left/Right hand | 73.24 | 77.66 | 88.64 | 89.51 |
e | Left/Right hand | 71.62 | 79.37 | 89.17 | 90.92 |
f | Left hand/Foot | 65.82 | 75.93 | 86.27 | 88.46 |
g | Left/Right hand | 72.19 | 76.87 | 88.37 | 90.16 |
Average accuracy of left hand/foot | 67.57 ± 2.47 | 73.90 ± 2.88 | 85.12 ± 1.63 | 87.35 ± 1.57 | |
Average accuracy of left/right hand | 73.45 ± 2.53 | 78.31 ± 1.39 | 88.95 ± 1.51 | 90.36 ± 1.71 | |
Average accuracy of all subjects | 71.77 ± 3.68 | 77.05 ± 2.70 | 87.85 ± 2.34 | 89.50 ± 2.12 |
MI | Method | Accuracy (%) | Database |
---|---|---|---|
Left hand/Foot | Our method | 87.35 | BCI Competition IV Dataset I |
SBLFB [38] | 79.85 | BCI Competition IV Dataset I | |
FBCSP [39] | 76.85 | BCI Competition IV Dataset I | |
Left/Right hand | Our method | 90.36 | BCI Competition IV Dataset I |
COL [40] | 86.25 | BCI Competition IV Dataset I | |
CSP [39] | 75.60 | BCI Competition IV Dataset I |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Z.; Lu, X.; Xi, X. EEG Feature Extraction Based on a Bilevel Network: Minimum Spanning Tree and Regional Network. Electronics 2020, 9, 203. https://doi.org/10.3390/electronics9020203
Luo Z, Lu X, Xi X. EEG Feature Extraction Based on a Bilevel Network: Minimum Spanning Tree and Regional Network. Electronics. 2020; 9(2):203. https://doi.org/10.3390/electronics9020203
Chicago/Turabian StyleLuo, Zhizeng, Xianju Lu, and Xugang Xi. 2020. "EEG Feature Extraction Based on a Bilevel Network: Minimum Spanning Tree and Regional Network" Electronics 9, no. 2: 203. https://doi.org/10.3390/electronics9020203
APA StyleLuo, Z., Lu, X., & Xi, X. (2020). EEG Feature Extraction Based on a Bilevel Network: Minimum Spanning Tree and Regional Network. Electronics, 9(2), 203. https://doi.org/10.3390/electronics9020203