Sea Fog Identification from GOCI Images Using CNN Transfer Learning Models
Abstract
:1. Introduction
2. Data
3. Methodology
3.1. CNN-TL Model
3.2. Band Combination
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gultepe, I.; Hansen, B.; Cober, S.; Pearson, G.; Milbrandt, J.; Platnick, S.; Taylor, P.; Gordon, M.; Oakley, J. The fog remote sensing and modeling field project. Am. Meteorol. Soc. 2009, 90, 341–359. [Google Scholar] [CrossRef]
- Gultepe, I.; Kuhn, T.; Pavolonis, M.; Calvert, C.; Gurka, J.; Heymsfield, A.J.; Liu, P.; Zhou, B.; Ware, R.; Ferrier, B.; et al. Ice fog in arctic during FRAM-ICE fog project: Aviation and nowcasting applications. Am. Meteorol. Soc. 2014, 95, 211–226. [Google Scholar] [CrossRef] [Green Version]
- Koračin, D.; Dorman, C.E.; Lewis, J.M.; Hudson, J.G.; Wilcox, E.M.; Torregrosa, A. Marine fog: A review. Atmo. Res. 2014, 143, 142–175. [Google Scholar] [CrossRef]
- Heo, K.; Kim, J.; Shim, J.; Ha, K.; Suh, A.; Oh, H.; Min, S. A Remote Sensed Data Combined Method for Sea Fog Detection. Korean J. Remote Sens. 2008, 24, 1–16. [Google Scholar]
- Heo, K.Y.; Park, S.; Ha, K.J.; Shim, J.S. Algorithm for sea fog monitoring with the use of information technologies. Meteorol. Appl. 2014, 21, 350–359. [Google Scholar] [CrossRef]
- Yuan, Y.; Qiu, Z.; Sun, D.; Wang, S.; Yue, X. Daytime sea fog retrieval based on GOCI data: A case study over the Yellow Sea. Opt. Express 2016, 24, 787–801. [Google Scholar] [CrossRef] [PubMed]
- Bendix, J.; Thies, B.; Cermak, J.; Nauß, T. Ground fog detection from space based on MODIS daytime data-a feasibility study. Weather Forecast 2005, 20, 989–1005. [Google Scholar] [CrossRef]
- Zhang, S.P.; Yi, L. A comprehensive dynamic threshold algorithm for daytime sea fog retrieval over the Chinese adjacent seas. Pure Appl.Geophys. 2013, 170, 1931–1944. [Google Scholar] [CrossRef]
- Wu, X.; Li, S. Automatic Sea Fog Detection over Chinese Adjacent Oceans Using Terra/MODIS Data. Int. J. Remote Sens. 2014, 35, 7430–7457. [Google Scholar] [CrossRef]
- Jeon, J.-Y.; Kim, S.-H.; Yang, C.-S. Fundamental Research on Spring Season Daytime Sea Fog Detection Using MODIS in the Yellow Sea. Korean Soc. Remote Sens. 2016, 32, 339–351. [Google Scholar] [CrossRef]
- Ellrod, G.P. Advances in the detection and analysis of fog at night using GOES multispectral infrared imagery. Weather Forecast 1995, 10, 606–619. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.F.; Turk, F.J.; Richardson, K. Stratus and fog products using GOES-8-9 3.9-μm data. Weather Forecast 1997, 12, 664–677. [Google Scholar] [CrossRef]
- Cermak, J.; Bendix, J. A novel approach to fog/low stratus detection using Meteosat 8 data. Atmos. Res. 2008, 87, 279–292. [Google Scholar] [CrossRef]
- Hunt, G.E. Radiative properties of terrestrial clouds at visible and infra-red thermal window wavelengths. Q. J. R. Meteorol. Soc. 1973, 99, 346–369. [Google Scholar]
- Eyre, J.; Brownscombe, J.; Allam, R. Detection of fog at night using Advanced Very High Resolution Radiometer (AVHRR) imagery. Meteorol. Mag. 1984, 113, 266–271. [Google Scholar]
- Turner, J.; Allam, R.; Maine, D. A Case Study of the Detection of Fog at Night Using Channel 3 and 4 on the Advanced Very High Resolution Radiometer (AVHRR). Meteorol. Mag. 1984, 115, 285–290. [Google Scholar]
- Ahn, M.; Sohn, E.; Hwang, B. A New Algorithm for Sea Fog/Stratus Detection Using GMS-5 IR Data. Adv. Atmos. Sci. 2003, 20, 899–913. [Google Scholar] [CrossRef]
- Jeon, J.-Y. Preliminary Study on Spring Season Daytime Sea Fog Detection Method Using MODIS in the Yellow Sea. Master’s Thesis, Korea Maritime and Ocean University, Busan, Korea, August 2016. [Google Scholar]
- Rashid, A.; Yang, C.-S. A simple sea fog prediction approach using GOCI observations and sea surface winds. Remote Sens. Lett. 2018, 9, 21–31. [Google Scholar] [CrossRef]
- Rashid, A.; Yang, C.-S. Estimation of Sea Fog Movement Using Satellite Data and 20-km WRF Wind Field in the East Sea from February to April in 2014. J. Coast. Disaster Prev. 2016, 3, 128–134. [Google Scholar]
- Wu, D.; Lu, B.; Zhang, T.; Yan, F. A method of detecting sea fogs using CALIOP data and its application to improve MODIS-based sea fog detection. J. Quantum Spectrosc. Radiat. 2015, 153, 88–94. [Google Scholar] [CrossRef]
- Yang, C.S.; Song, J.H. Geometric performance evaluation of the Geostationary Ocean Color Imager. Ocean Sci. J. 2012, 47, 235–246. [Google Scholar] [CrossRef]
- Ryu, J.-H.; Han, H.-J.; Cho, S.; Park, Y.-J.; Ahn, Y.-H. Overview of Geostationary Ocean Color Imager (GOCI) and GOCI Data Processing System (GDPS). Ocean Sci. J. 2012, 47, 223–233. [Google Scholar] [CrossRef]
- Sarkar, D.; Bali, R.; Ghosh, T. Hands-On Transfer Learning with Python; Packt: Berminghan, UK, 2018. [Google Scholar]
- ImageNet. Available online: http://www.image-net.org (accessed on 30 December 2019).
- Kingma, D.P.; Ba, J.L. Adam: A method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
Parameter | Setting |
---|---|
Training epoch | 20 |
Batch size | 15 |
Optimizer | Adam |
Learning rate | 0.001 |
Bands | Model | Training Accuracy [%] | Test Accuracy [%] |
---|---|---|---|
3 bands | VGG19 | 84.6 | 81.6 |
VGG19-TL 1 | 96.3 | 91.6 | |
ResNet50 | 76.0 | 33.3 | |
ResNet50-TL | 96.3 | 73.3 | |
5 bands 2 | VGG19 | 63.6 | 71.6 |
ResNet50 | 73.3 | 83.3 | |
5 bands and ratios 3 | VGG19 | 68.0 | 61.6 |
ResNet50 | 49.3 | 46.6 | |
5 bands and average 4 8 bands | VGG19 | 68.0 | 63.3 |
ResNet50 | 43.0 | 60.0 | |
VGG19 | 71.0 | 60.0 | |
ResNet50 | 52.6 | 60.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, H.-K.; Kim, S.; Edwin, J.; Yang, C.-S. Sea Fog Identification from GOCI Images Using CNN Transfer Learning Models. Electronics 2020, 9, 311. https://doi.org/10.3390/electronics9020311
Jeon H-K, Kim S, Edwin J, Yang C-S. Sea Fog Identification from GOCI Images Using CNN Transfer Learning Models. Electronics. 2020; 9(2):311. https://doi.org/10.3390/electronics9020311
Chicago/Turabian StyleJeon, Ho-Kun, Seungryong Kim, Jonathan Edwin, and Chan-Su Yang. 2020. "Sea Fog Identification from GOCI Images Using CNN Transfer Learning Models" Electronics 9, no. 2: 311. https://doi.org/10.3390/electronics9020311
APA StyleJeon, H. -K., Kim, S., Edwin, J., & Yang, C. -S. (2020). Sea Fog Identification from GOCI Images Using CNN Transfer Learning Models. Electronics, 9(2), 311. https://doi.org/10.3390/electronics9020311