Optimized Node Clustering in VANETs by Using Meta-Heuristic Algorithms
Abstract
:1. Introduction
2. Literature Review
3. Intelligent Clustering via GOA
- Multiple solution sets and subsets can be used to form a complete solution.
- Mechanism for the election of the best solution depends on the fitness of each solution set.
- It is desired but not compulsory for any technique to provide an optimal solution for all types of problems.
Algorithm 1. GOA (grasshopper optimization algorithm) pseudo-code. | |
1. | Set all vehicles places on the highway (randomly) |
2. | Set each node’s direction (Randomly) |
3. | Set the speed/velocity of each vehicle |
4. | Make Mesh topology |
5. | Compute the inter-vehicle distance with the corresponding nodes in the above topology |
6. | Initialize Grasshoppers in Search space |
7. | Initialize Cmin and Cmax |
8. | Calculate fitness of initial swarm |
9. | FOR iterations = 1 to stall iteration (stall iteration is set to 10) |
10. | WHILE (Nodes! = empty) |
11. | Nodes clustering = All Node |
12. | End while |
13. | While 1 <= iterations (While iterations are greater or equal to one) |
14. | Update C using |
15. | For 1 to Population size (Dragonflies) |
16. | Normalize distances Between Search agents |
17. | Position Update of current Search Agent |
18. | Bring all Agents with in Upper Bound (UB) and LB |
19. | END FOR |
20. | Update Best cost |
21. | Iteration+1 |
22. | End while |
23. | Best cost |
24. | END FOR |
3.1. GOA Pseudo Code
3.2. Fitness Function used in GOA
3.3. Equational Operators
4. Results and Discussion
4.1. The Number Of Clusters Vs. Transmission Range For Grid Size 1 KM2 × 1 KM2
4.2. The Number of Clusters Vs. Transmission Range for Grid Size 2 KM2 × 2 KM2
4.3. The Number of Clusters Vs. Transmission Range for Grid Size 3 KM2 × 3 KM2
4.4. The Number of Clusters Vs. Transmission Range for Grid Size 4 KM2 × 4 KM2
5. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Dimitrakopoulos, G.; Demestichas, P. Intelligent transportation systems. IEEE Veh. Technol. Mag. 2010, 5, 77–84. [Google Scholar] [CrossRef]
- Vinel, N.L.; Isachenkov, P. Modeling of V2V Communications for C-ITS Safety Applications: A CPS Perspective. IEEE Commun. Lett. 2018, 22, 1600–1603. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, Y.; Wen, Y.; Liang, L.; Zou, F. Optimization of information interaction protocols in cooperative vehicle-infrastructure systems. Chin. J. Electron. 2018, 27, 439–444. [Google Scholar] [CrossRef]
- Wevers, K.; Lu, M. V2X Communication for ITS—From IEEE 802.11 p Towards 5G. IEEE 5G Tech Focus 2017, 1. [Google Scholar]
- Eichler, S. Performance evaluation of the IEEE 802.11 p WAVE communication standard. In Proceedings of the Vehicular Technology Conference, Baltimore, MD, USA, 30 September–3 October 2007; pp. 2199–2203. [Google Scholar]
- Cseh, C. Architecture of the dedicated short-range communications (DSRC) protocol. In Proceedings of the Vehicular Technology Conference, Ottawa, ON, Canada, 21 May 1998; pp. 2095–2099. [Google Scholar]
- Jiang, D.; Delgrossi, L. IEEE 802.11 p: Towards an international standard for wireless access in vehicular environments. In Proceedings of the Vehicular Technology Conference, Singapore, 11–14 May 2008; pp. 2036–2040. [Google Scholar]
- Haider, B.; Henna, S.; Gul, A.; Aadil, F. A survey on mobility management techniques in vanets. In Proceedings of the Computer and Information Technology (CIT), Nadi, Fiji, 8–10 December 2016; pp. 125–133. [Google Scholar]
- Mavrovouniotis, M.; Li, C.; Yang, S. A survey of swarm intelligence for dynamic optimization: Algorithms and applications. Swarm Evol. Comput. 2017, 33, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.; Zheng, D.; Zhao, Q.; Jiang, X. SEGM: A secure group management framework in integrated VANET-cellular networks. Veh. Commun. 2018, 11, 33–45. [Google Scholar] [CrossRef]
- Basu, P.; Khan, N.; Little, T.D. A mobility based metric for clustering in mobile ad hoc networks. In Proceedings of the Distributed computing Systems Workshop, Mesa, AZ, USA, 16–19 April 2001; pp. 413–418. [Google Scholar]
- Harrabi, S.; Jaafar, I.B.; Ghedira, K. Message Dissemination in Vehicular Networks on the Basis of Agent Technology. Wirel. Pers. Commun. 2017, 96, 6129–6146. [Google Scholar] [CrossRef]
- Royer, E.M.; Perkins, C.E. Multicast operation of the ad-hoc on-demand distance vector routing protocol. In Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking, Washington, DC, USA, 15–20 August 1999; pp. 207–218. [Google Scholar]
- Daeinabi, A.G.P. Rahbar, and A. Khademzadeh, VWCA: An efficient clustering algorithm in vehicular ad hoc networks. J. Netw. Comput. Appl. 2011, 34, 207–222. [Google Scholar] [CrossRef]
- Chatterjee, M.; Das, S.K.; Turgut, D. WCA: A weighted clustering algorithm for mobile ad hoc networks. Clust. Comput. 2002, 5, 193–204. [Google Scholar] [CrossRef]
- Wang, S.-S.; Lin, Y.-S. PassCAR: A passive clustering aided routing protocol for vehicular ad hoc networks. Comput. Commun. 2013, 36, 170–179. [Google Scholar] [CrossRef]
- Hochbaum, D.S. Approximating covering and packing problems: set cover, vertex cover, independent set, and related problems. In Approximation Algorithms for NP-hard Problems; PWS: Boston, MA, USA, 1996; pp. 94–143. [Google Scholar]
- Coello, C.A.C.; Lamont, G.B.; Van Veldhuizen, D.A. Evolutionary Algorithms for Solving Multi-objective Problems; Springer: Boston, MA, USA, 2007. [Google Scholar]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper optimisation algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47. [Google Scholar] [CrossRef]
- Cooper, C.; Franklin, D.; Ros, M.; Safaei, F.; Abolhasan, M. A comparative survey of VANET clustering techniques. IEEE Commun. Surv. Tutor. 2017, 19, 657–681. [Google Scholar] [CrossRef]
- Lin, D.; Kang, J.; Squicciarini, A.; Wu, Y.; Gurung, S.; Tonguz, O. MoZo: A moving zone based routing protocol using pure V2V communication in VANETs. IEEE Trans. Mob. Comput. 2017, 16, 1357–1370. [Google Scholar] [CrossRef]
- Lyu, F.; Zhu, H.; Zhou, H.; Xu, W.; Zhang, N.; Li, M.; Shen, X. Ss-mac: A novel time slot-sharing mac for safety messages broadcasting in vanets. IEEE Trans. Veh. Technol. 2018, 67, 3586–3597. [Google Scholar] [CrossRef]
- Aadil, F.; Rizwan, S.; Akram, A. Vehicular Ad Hoc Networks (VANETs), Past Present and Future: A Survey; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Kaur, P.; Singh, A. Nature-Inspired Optimization Techniques in VANETs and FANETs: A Survey. In Advanced Computational and Communication Paradigms; Springer: Singapore, 2018; pp. 651–663. [Google Scholar]
- Bitam, S.; Mellouk, A.; Zeadally, S. HyBR: A hybrid bio-inspired bee swarm routing protocol for safety applications in vehicular ad hoc networks (VANETs). J. Syst. Archit. 2013, 59, 953–967. [Google Scholar] [CrossRef]
- Zhang, X. A binary artificial bee colony algorithm for constructing spanning trees in vehicular ad hoc networks. Ad Hoc Netw. 2017, 58, 198–204. [Google Scholar] [CrossRef]
- Aadil, F.; Bajwa, K.B.; Khan, S.; Chaudary, N.M.; Akram, A. CACONET: Ant Colony Optimization (ACO) Based Clustering Algorithm for VANET. Plos ONE 2016, 11, e0154080. [Google Scholar] [CrossRef] [Green Version]
- Husnain, G.; Anwar, S.; Shahzad, F. Performance evaluation of CLPSO and MOPSO routing algorithms for optimized clustering in Vehicular Ad hoc Networks. In Proceedings of the Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 10–14 January 2017; pp. 772–778. [Google Scholar]
- Fahad, M.; Aadil, F.; Ejaz, S.; Ali, A. Implementation of evolutionary algorithms in vehicular ad-hoc network for cluster optimization. In Proceedings of the Intelligent Systems Conference (IntelliSys), London, UK, 7–8 September 2017; pp. 137–141. [Google Scholar]
- Aadil, F.; Khan, S.; Bajwa, K.B.; Khan, M.F.; Ali, A. Intelligent Clustering in Vehicular ad hoc Networks. TIIS 2016, 10, 3512–3528. [Google Scholar]
- Fahad, M.; Aadil, F.; Khan, S.; Shah, P.A.; Muhammad, K.; Lloret, J.; Mehmood, I. Grey wolf optimization based clustering algorithm for vehicular ad-hoc networks. Comput. Electr. Eng. 2018, 70, 853–870. [Google Scholar] [CrossRef]
- Aadil, F.; Ahsan, W.; Rehman, Z.U.; Shah, P.A.; Rho, S.; Mehmood, I. Clustering algorithm for internet of vehicles (IoV) based on dragonfly optimizer (CAVDO). J. Supercomput. 2018, 74, 4542–4567. [Google Scholar] [CrossRef]
- Chiti, F.; Fantacci, R.; Gu, Y.; Han, Z. Content sharing in Internet of Vehicles: Two matching-based user-association approaches. Veh. Commun. 2017, 8, 35–44. [Google Scholar] [CrossRef]
- Chiti, F.; Fantacci, R.; Dei, E.; Han, Z. Context aware clustering in VANETs: A game theoretic perspective. In Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–10 June 2015; pp. 6584–6588. [Google Scholar]
- Khan, M.F.; Yau, K.-L.A.; Noor, R.M.; Imran, M.A. Survey and taxonomy of clustering algorithms in 5G. J. Netw. Comput. Appl. 2020, 102539. [Google Scholar] [CrossRef]
- Abbas, F.; Fan, P. Clustering-based reliable low-latency routing scheme using ACO method for vehicular networks. Veh. Commun. 2018, 12, 66–74. [Google Scholar] [CrossRef]
- Goswami, V.; Verma, S.; Singh, V. A novel hybrid GA-ACO based clustering algorithm for VANET. In Proceedings of the Advances in Computing, Communication & Automation (ICACCA), Dehradun, India, 15–16 September 2017; pp. 1–6. [Google Scholar]
- Srinivas, N.; Deb, K. Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 1994, 2, 221–248. [Google Scholar] [CrossRef]
- Mehmood, A.; Khanan, A.; Mohamed, A.H.H.; Mahfooz, S.; Song, H.; Abdullah, S. ANTSC: An intelligent naive Bayesian probabilistic estimation practice for traffic flow to form stable clustering in VANET. IEEE Access 2018, 6, 4452–4461. [Google Scholar] [CrossRef]
- Yang, F.; Lin, Z.; Tang, Y. A Traffic Flow Based Clustering Scheme for VANETs. Sens. Transducers 2014, 180, 110. [Google Scholar]
- Gajare, S.; Deore, P.; Wagh, S. Traffic management in VANET using clustering. Int. J. Eng. Tech. Res. (Ijetr) 2014, 2, 175–180. [Google Scholar]
- Duan, X.; Liu, Y.; Wang, X. SDN enabled 5G-VANET: Adaptive vehicle clustering and beamformed transmission for aggregated traffic. IEEE Commun. Mag. 2017, 55, 120–127. [Google Scholar] [CrossRef]
- Timotheou, S.; Krikidis, I. Fairness for Non-Orthogonal Multiple Access in 5G Systems. IEEE Signal Process. Lett. 2015, 22, 1647–1651. [Google Scholar] [CrossRef] [Green Version]
- Talbi, E.G. Metaheuristics: from Design to Implementation; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
Parameters | Values for GOA |
---|---|
Population size (Dragonflies) | 100 |
Maximum iterations | 150 |
c=cMax-l*((cMax-cMin)/Max_iter) | 0–1 |
Vehicle velocity range | 22 m/s–30 m/s |
Simulation area | 1 × 1 km2, 2 × 2 km2, 3 × 3 km2, 4 × 4 km2 |
Maximum acceleration | 1.5 m/s2 |
Minimum distance B/W vehicles | 2 m |
Maximum distance B/W vehicles | 5 m |
Lane width | 50 m |
Total lanes | 8 |
Transmission range | Dynamic |
Mobility model | Freeway mobility model |
Simulation runs | 10 |
W1 (weight of first objective function) | 0.5 |
W2 (weight of second objective function) | 0.5 |
Simulation tool | Matlab 2018a |
CPU | intel i7-5500u |
CPU frequency | 2.4 GHz |
RAM | 8 GB |
Operating system | Windows 10 (64 bit) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahsan, W.; Khan, M.F.; Aadil, F.; Maqsood, M.; Ashraf, S.; Nam, Y.; Rho, S. Optimized Node Clustering in VANETs by Using Meta-Heuristic Algorithms. Electronics 2020, 9, 394. https://doi.org/10.3390/electronics9030394
Ahsan W, Khan MF, Aadil F, Maqsood M, Ashraf S, Nam Y, Rho S. Optimized Node Clustering in VANETs by Using Meta-Heuristic Algorithms. Electronics. 2020; 9(3):394. https://doi.org/10.3390/electronics9030394
Chicago/Turabian StyleAhsan, Waleed, Muhammad Fahad Khan, Farhan Aadil, Muazzam Maqsood, Staish Ashraf, Yunyoung Nam, and Seungmin Rho. 2020. "Optimized Node Clustering in VANETs by Using Meta-Heuristic Algorithms" Electronics 9, no. 3: 394. https://doi.org/10.3390/electronics9030394
APA StyleAhsan, W., Khan, M. F., Aadil, F., Maqsood, M., Ashraf, S., Nam, Y., & Rho, S. (2020). Optimized Node Clustering in VANETs by Using Meta-Heuristic Algorithms. Electronics, 9(3), 394. https://doi.org/10.3390/electronics9030394