Consistency of Control Performance in 3D Overhead Cranes under Payload Mass Uncertainty
Abstract
:1. Introduction
2. A Sliding Mode Controller for Uncertain Payload-Mass 3D Overhead Cranes
2.1. 3D Overhead Crane Dynamic Model
2.2. A Sliding Mode Controller for a 3D Overhead Crane
3. An Adaptive Sliding Mode Controller for Uncertain Payload-Mass 3D Overhead Cranes
3.1. An Adaptive Controller
3.2. An Adaptive Controller
4. Simulations and Experimental Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Butler, H.; Honderd, G.; Van Amerongen, J. Model reference adaptive control of a gantry crane scale model. IEEE Control Syst. Mag. 1991, 11, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.; Nation, S.; Singhose, W.; Vaughan, J.E. Control of crane payloads that bounce during hoisting. IEEE Trans. Control Syst. Technol. 2014, 22, 1233–1238. [Google Scholar] [CrossRef]
- Lee, H.H. Motion planning for three-dimensional overhead cranes with high-speed load hoisting. Int. J. Control 2005, 78, 875–886. [Google Scholar] [CrossRef]
- Sun, N.; Yang, T.; Chen, H.; Fang, Y.C.; Qian, Y.Z. Adaptive anti-swing and positioning control for 4-DOF rotary cranes subject to uncertain/unknown parameters with hardware experiments. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 1309–1321. [Google Scholar] [CrossRef]
- Sun, N.; Yang, T.; Fang, Y.C.; Wu, Y.M.; Chen, H. Transportation control of double-pendulum cranes with a nonlinear quasi-PID scheme: Design and experiments. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 1408–1418. [Google Scholar] [CrossRef]
- Saeidi, H.; Naraghi, M.; Raie, A.A. A neural network selftuner based on input shapers behavior for anti-sway system of gantry cranes. J. Vib. Control 2013, 19, 1936–1949. [Google Scholar] [CrossRef]
- Omar, H.M. Control of Gantry and Tower Cranes. Ph. D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2003. [Google Scholar]
- Omar, H.M.; Nayfeh, A.H. Anti-swing control of gantry and tower cranes using fuzzy and time-delayed feedback with friction compensation. Shock Vib. 2005, 12, 73–89. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Dixon, W.E.; Dawson, D.M.; Zergeroglu, E. Nonlinear coupling control laws for an underactuated overhead crane system. IEEE/ASME Trans. Mechatron. 2003, 8, 418–423. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Lewis, F.L.; Huang, T. Nonlinear feedback control of a gantry crane. In Proceedings of the IEEE American Control Conference, Seattle, WA, USA, 21–23 June 1995; pp. 4310–4315. [Google Scholar] [CrossRef]
- Park, H.; Chwa, D.; Hong, K.S. A feedback linearization control of container cranes: Varying rope length. Int. J. Control Autom. Syst. 2007, 5, 379–387. [Google Scholar]
- Le, T.A.; Lee, S.G.; Dang, V.H.; Moon, S.; Kim, B.S. Partial feedback linearization control of a three-dimensional overhead crane. Int. J. Control Autom. Syst. 2013, 11, 718–727. [Google Scholar] [CrossRef]
- Le, T.A.; Kim, G.H.; Kim, M.Y.; Lee, S.G. Partial feedback linearization control of overhead cranes with varying cable lengths. Int. J. Precis. Eng. Manuf. 2012, 13, 501–507. [Google Scholar] [CrossRef]
- Le, H.; Nguyen, L.; Thiyagarajan, K.; Pham, H. A Dynamic Surface Controller based on Adaptive Neural Network for Dual Arm Robots. In Proceedings of the International IEEE Conference on Industrial Electronics and Applications, Kristiansand, Norway, 21–25 June 2020. Accepted. [Google Scholar]
- Pham, D.T.; Nguyen, T.V.; Le, H.X.; Nguyen, L.; Thai, N.H.; Phan, T.A.; Pham, H.T.; Duong, A.H.; Bui, L.T. Adaptive neural network based dynamic surface control for uncertain dual arm robots. Int. J. Dynam. Control 2019. [Google Scholar] [CrossRef] [Green Version]
- Van Nguyen, T.; Thai, N.H.; Pham, H.T.; Phan, T.A.; Nguyen, L.; Le, H.X.; Nguyen, H.D. Adaptive Neural Network-Based Backstepping Sliding Mode Control Approach for Dual-Arm Robots. J. Control Autom. Electr. Syst. 2019, 30, 512–521. [Google Scholar] [CrossRef] [Green Version]
- Shyu, K.K.; Jen, C.L.; Shang, L.J. Design of sliding-mode controller for anti-swing control of overhead cranes. In Proceedings of the 31st Annual Conference of IEEE Industrial Electronics Society, Raleigh, NC, USA, 6–10 November 2005; pp. 147–152. [Google Scholar] [CrossRef]
- Qian, D.W.; Yi, J.Q.; Zhao, D.B. Control of overhead crane systems by combining sliding mode with fuzzy regulator. IFAC Proc. Vol. 2011, 44, 9320–9325. [Google Scholar] [CrossRef] [Green Version]
- Le, T.A.; Kim, J.J.; Lee, S.G.; Lim, T.G.; Luong, N.C. Second-order sliding mode control of a 3D overhead crane with uncertain system parameters. Int. J. Precis. Eng. Manuf. 2014, 15, 811–819. [Google Scholar] [CrossRef]
- Ngo, Q.H.; Hong, K.S. Sliding-mode antisway control of an offshore container crane. IEEE/ASME Trans. Mechatron. 2012, 17, 201–209. [Google Scholar] [CrossRef]
- Bartolini, G.; Pisano, A.; Usai, E. Second-order sliding mode control of container cranes. Automatica 2002, 38, 1783–1790. [Google Scholar] [CrossRef]
- Mahjoub, S.; Mnif, F.; Derbel, N. Second-order sliding mode approaches for the control of a class of underactuated systems. Int. J. Autom. Comput. 2015, 12, 134–141. [Google Scholar] [CrossRef]
- Xu, W.M.; Zheng, X.; Liu, Y.Q.; Zhang, M.J.; Luo, Y.Y. Adaptive dynamic sliding mode control for overhead cranes. In Proceedings of the IEEE 34th Chinese Control Conference, Hangzhou, China, 28–30 July 2015; pp. 3287–3292. [Google Scholar] [CrossRef]
- Wang, W.; Yi, J.; Zhao, D.; Liu, D. Design of a stable sliding-mode controller for a class of second-order underactuated systems. IEEE Proc. Control Theory Appl. 2004, 151, 630–690. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Liu, X.D.; Yi, J.Q. Structure design of two types of sliding-mode controllers for a class of under-actu-ated mechanical systems. IET Control Theory Appl. 2007, 1, 163–172. [Google Scholar] [CrossRef]
- Yang, J.H.; Yang, K.S. Adaptive coupling control for overhead crane systems. Mechatronics 2007, 17, 143–152. [Google Scholar] [CrossRef]
- Park, M.S.; Chwa, D.; Eom, M. Adaptive sliding-mode antisway control of uncertain overhead cranes with high speed hoisting motion. IEEE Trans. Fuzzy Syst. 2014, 22, 1262–1271. [Google Scholar] [CrossRef]
- Tsai, C.C.; Wu, H.L.; Chuang, K.H. Intelligent sliding mode motion control using fuzzy wavelet networks for automatic 3D overhead cranes. In Proceedings of the IEEE SICE Annual Conference, Akita, Japan, 20–23 August 2012; pp. 1256–1261. [Google Scholar]
- Le, H.X.; Le, A.V.; Nguyen, L. Adaptive fuzzy observer based hierarchical sliding mode control for uncertain 2D overhead cranes. Cyber-Phys. Syst. 2019, 5, 191–208. [Google Scholar] [CrossRef]
- Le, V.; Le, H.; Nguyen, L.; Phan, M. An Efficient Adaptive Hierarchical Sliding Mode Control Strategy Using Neural Networks for 3D Overhead Cranes. Int. J. Autom. Comput. 2019, 16, 614–627. [Google Scholar] [CrossRef] [Green Version]
- Tuan, L.A.; Lee, S.-G.; Nho, L.C.; Kim, D.H. Model reference adaptive sliding mode control for three dimensional overhead cranes. Int. J. Precis. Eng. Manuf. 2013, 14, 1329–1338. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Crane’s dynamic model properties | |
Adaptive controller characteristics | |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoang, U.T.T.; Le, H.X.; Thai, N.H.; Pham, H.V.; Nguyen, L. Consistency of Control Performance in 3D Overhead Cranes under Payload Mass Uncertainty. Electronics 2020, 9, 657. https://doi.org/10.3390/electronics9040657
Hoang UTT, Le HX, Thai NH, Pham HV, Nguyen L. Consistency of Control Performance in 3D Overhead Cranes under Payload Mass Uncertainty. Electronics. 2020; 9(4):657. https://doi.org/10.3390/electronics9040657
Chicago/Turabian StyleHoang, Uyen Tu Thi, Hai Xuan Le, Nguyen Huu Thai, Hung Van Pham, and Linh Nguyen. 2020. "Consistency of Control Performance in 3D Overhead Cranes under Payload Mass Uncertainty" Electronics 9, no. 4: 657. https://doi.org/10.3390/electronics9040657
APA StyleHoang, U. T. T., Le, H. X., Thai, N. H., Pham, H. V., & Nguyen, L. (2020). Consistency of Control Performance in 3D Overhead Cranes under Payload Mass Uncertainty. Electronics, 9(4), 657. https://doi.org/10.3390/electronics9040657