Findings about LORETA Applied to High-Density EEG—A Review
Abstract
:1. Introduction
2. EEG
2.1. Low-Density EEG
2.2. High-Density EEG
3. EEG Source Localization
3.1. Low Resolution Electromagnetic Tomography (LORETA)
3.2. Standardized Low Resolution Electromagnetic Tomography (sLORETA)
3.3. Exact Low Resolution Electromagnetic Tomography (eLORETA)
4. LORETA Analysis
4.1. Event-Related Potentials
4.2. Epilepsy
4.3. Alzeheimer’s Disease
4.4. Depression
4.5. Stroke
4.6. Schizophrenia
5. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lenartowicz, A.; Poldrack, R. Brain Imaging; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Jatoi, M.A.; Kamel, N.; Malik, A.S.; Faye, I.; Begum, T. A survey of methods used for source localization using EEG signals. Biomed. Signal Process. Control 2014, 11, 42–52. [Google Scholar] [CrossRef]
- Tudor, M.; Tudor, L.; Tudor, K.I. Hans Berger (1873-1941)—The History of Electroencephalography. J. Croatian Acad. Med. Sci. 2005, 59, 307–313. [Google Scholar]
- Wolters, C.H.; Anwander, A.; Tricoche, X.; Weinstein, D.; Koch, M.A.; Macleod, R.S. Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: A simulation and visualization study using high-resolution finite element modeling. NeuroImage 2006, 30, 813–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.K.; Rastegarnia, A.; Yang, Z. Methods for artifact detection and removal from scalp EEG: A review. Neurophysiol. Clin./Clin. Neurophysiol. 2016, 46, 287–305. [Google Scholar] [CrossRef] [PubMed]
- Nunez, P.L.; Srinivasan, R.; Westdorp, A.F.; Wijesinghe, R.S.; Tucker, D.M.; Silberstein, R.B.; Cadusch, P.J. EEG coherency: I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr. Clin. Neurophysiol. 1997, 103, 499–515. [Google Scholar] [CrossRef]
- Chella, F.; Pizzella, V.; Zappasodi, F.; Marzetti, L. Impact of the reference choice on scalp EEG connectivity estimation. J. Neural Eng. 2016, 13, 036016. [Google Scholar] [CrossRef]
- Bertrand, O.; Perrin, F.; Pernier, J. A theoretical justification of the average reference in topographic evoked potential studies. Electroencephalogr. Clin. Neurophysiol./Evoked Potentials Sect. 1985, 62, 462–464. [Google Scholar] [CrossRef]
- Jasper, H.H. The ten-twenty electrode system of the International Federation. Electroencephalogr. Clin. Neurophysiol. 1958, 10, 370–375. [Google Scholar]
- Malmivuo, P.; Malmivuo, J.; Plonsey, R. Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields; Oxford University Press: New York, NY, USA, 1995. [Google Scholar]
- Levin, K.; Chauvel, P. High-resolution EEG. In Clinical Neurophysiology: Basis and Technical Aspects: Handbook of Clinical Neurology Series; Elsevier: Amsterdam, The Netherlands, 2019; p. 185. [Google Scholar]
- Srinivasan, R.; Tucker, D.M.; Murias, M. Estimating the spatial Nyquist of the human EEG. Behav. Res. Methods Instrum. Comput. 1998, 30, 8–19. [Google Scholar] [CrossRef] [Green Version]
- Chatrian, G.; Lettich, E.; Nelson, P. Ten percent electrode system for topographic studies of spontaneous and evoked EEG activities. Am. J. EEG Technol. 1985, 25, 83–92. [Google Scholar] [CrossRef]
- Spitzer, A.R.; Cohen, L.G.; Fabrikant, J.; Hallett, M. A method for determining optimal interelectrode spacing for cerebral topographic mapping. Electroencephalogr. Clin. Neurophysiol. 1989, 72, 355–361. [Google Scholar] [CrossRef]
- Gevins, A.; Brickett, P.; Costales, B.; Le, J.; Reutter, B. Beyond topographic mapping: Towards functional-anatomical imaging with 124-channel EEGs and 3-D MRIs. Brain Topogr. 1990, 3, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Tucker, D.M. Spatial sampling of head electrical fields: The geodesic sensor net. Electroencephalogr. Clin. Neurophysiol. 1993, 87, 154–163. [Google Scholar] [CrossRef]
- Freeman, W.J.; Holmes, M.D.; Burke, B.C.; Vanhatalo, S. Spatial spectra of scalp EEG and EMG from awake humans. Clin. Neurophysiol. 2003, 114, 1053–1068. [Google Scholar] [CrossRef] [Green Version]
- Mammone, N.; De Salvo, S.; Ieracitano, C.; Marino, S.; Cartella, E.; Bramanti, A.; Giorgianni, R.; Morabito, F.C. Compressibility of High-Density EEG Signals in Stroke Patients. Sensors 2018, 18, 4107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mammone, N.; De Salvo, S.; Bonanno, L.; Ieracitano, C.; Marino, S.; Marra, A.; Bramanti, A.; Morabito, F.C. Brain network analysis of compressive sensed high-density EEG signals in AD and MCI subjects. IEEE Trans. Ind. Inf. 2018, 15, 527–536. [Google Scholar] [CrossRef]
- Oostenveld, R.; Praamstra, P. The five percent electrode system for high-resolution EEG and ERP measurements. Clin. Neurophysiol. 2001, 112, 713–719. [Google Scholar] [CrossRef]
- Baillet, S. Forward and inverse problems of MEG/EEG. Encycl. Comput. Neurosci. 2015, 1226–1233. [Google Scholar] [CrossRef]
- Lantz, G.; De Peralta, R.G.; Spinelli, L.; Seeck, M.; Michel, C. Epileptic source localization with high density EEG: how many electrodes are needed? Clin. Neurophysiol. 2003, 114, 63–69. [Google Scholar] [CrossRef]
- Michel, C.M.; Murray, M.M.; Lantz, G.; Gonzalez, S.; Spinelli, L.; de Peralta, R.G. EEG source imaging. Clin. Neurophysiol. 2004, 115, 2195–2222. [Google Scholar] [CrossRef]
- Staljanssens, W.; Strobbe, G.; Van Holen, R.; Birot, G.; Gschwind, M.; Seeck, M.; Vandenberghe, S.; Vulliémoz, S.; van Mierlo, P. Seizure onset zone localization from ictal high-density EEG in refractory focal epilepsy. Brain Topogr. 2017, 30, 257–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J.; Davey, C.; Poulsen, C.; Luu, P.; Turovets, S.; Anderson, E.; Li, K.; Tucker, D. EEG source localization: Sensor density and head surface coverage. J. Neurosci. Methods 2015, 256, 9–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grech, R.; Cassar, T.; Muscat, J.; Camilleri, K.P.; Fabri, S.G.; Zervakis, M.; Xanthopoulos, P.; Sakkalis, V.; Vanrumste, B. Review on solving the inverse problem in EEG source analysis. J. Neuroeng. Rehabilit. 2008, 5, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hämäläinen, M.S.; Ilmoniemi, R.J. Interpreting magnetic fields of the brain: Minimum norm estimates. Med. Biol. Eng. Comput. 1994, 32, 35–42. [Google Scholar] [CrossRef]
- Pascual-Marqui, R.D.; Michel, C.M.; Lehmann, D. Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain. Int. J. Psychophysiol. 1994, 18, 49–65. [Google Scholar] [CrossRef]
- Talairach, J.; Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain; Theime: New York, NY, USA, 1988. [Google Scholar]
- Pascual-Marqui, R.D. Review of methods for solving the EEG inverse problem. Int. J. Bioelectromagn. 1999, 1, 75–86. [Google Scholar]
- Tong, S.; Thakor, N.V. Quantitative EEG Analysis Methods and Clinical Applications; Artech House: Norwood, MA, USA, 2009. [Google Scholar]
- Tikhonov, A.N.; Arsenin, V.Y. Solutions of Ill-Posed Problems; WH Winston: Washington, DC, USA, 1977; Volume 330. [Google Scholar]
- Dale, A.M.; Liu, A.K.; Fischl, B.R.; Buckner, R.L.; Belliveau, J.W.; Lewine, J.D.; Halgren, E. Dynamic statistical parametric mapping: Combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 2000, 26, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Pascual-Marqui, R.D. Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details. Methods Find Exp. Clin. Pharmacol. 2002, 24, 5–12. [Google Scholar]
- Pascual-Marqui, R.D. Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: Exact, zero error localization. arXiv 2007, arXiv:0710.3341. [Google Scholar]
- Jatoi, M.A.; Kamel, N.; Malik, A.S.; Faye, I. EEG based brain source localization comparison of sLORETA and eLORETA. Australas. Phys. Eng. Sci. Med. 2014, 37, 713–721. [Google Scholar] [CrossRef]
- Shigemura, J.; Yoshino, A.; Kobayashi, Y.; Takahashi, Y.; Nomura, S. Spatiotemporal differences between cognitive processes of spatially possible and impossible objects: A high-density electrical mapping study. Cognit. Brain Res. 2004, 18, 301–305. [Google Scholar] [CrossRef]
- Kim, Y.Y.; Lee, B.; Shin, Y.W.; Kwon, J.S.; Kim, M.S. Activity of left inferior frontal gyrus related to word repetition effects: LORETA imaging with 128-channel EEG and individual MRI. Neuroimage 2006, 29, 712–720. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.A.; Seymour, B.; Boyle, Y.; El-Deredy, W.; Jones, A.K. Modulation of pain ratings by expectation and uncertainty: Behavioral characteristics and anticipatory neural correlates. Pain 2008, 135, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Lamm, C.; White, L.K.; McDermott, J.M.; Fox, N.A. Neural activation underlying cognitive control in the context of neutral and affectively charged pictures in children. Brain Cognit. 2012, 79, 181–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamm, C.; Walker, O.L.; Degnan, K.A.; Henderson, H.A.; Pine, D.S.; McDermott, J.M.; Fox, N.A. Cognitive control moderates early childhood temperament in predicting social behavior in 7-year-old children: An ERP study. Dev. Sci. 2014, 17, 667–681. [Google Scholar] [CrossRef] [PubMed]
- Meyer, G.F.; Harrison, N.R.; Wuerger, S.M. The time course of auditory–visual processing of speech and body actions: Evidence for the simultaneous activation of an extended neural network for semantic processing. Neuropsychologia 2013, 51, 1716–1725. [Google Scholar] [CrossRef]
- Tremblay, E.; Vannasing, P.; Roy, M.S.; Lefebvre, F.; Kombate, D.; Lassonde, M.; Lepore, F.; McKerral, M.; Gallagher, A. Delayed early primary visual pathway development in premature infants: High density electrophysiological evidence. PLoS ONE 2014, 9, e107992. [Google Scholar] [CrossRef] [PubMed]
- Tsolaki, A.; Kosmidou, V.; Hadjileontiadis, L.; Kompatsiaris, I.Y.; Tsolaki, M. Brain source localization of MMN, P300 and N400: Aging and gender differences. Brain Res. 2015, 1603, 32–49. [Google Scholar] [CrossRef]
- Tsolaki, A.C.; Kosmidou, V.E.; Kompatsiaris, I.Y.; Papadaniil, C.; Hadjileontiadis, L.; Tsolaki, M. Age-induced differences in brain neural activation elicited by visual emotional stimuli: A high-density EEG study. Neuroscience 2017, 340, 268–278. [Google Scholar] [CrossRef]
- Commission on Classification and Terminology of the International League Against Epilepsy. Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 1989, 30, 389–399. [Google Scholar] [CrossRef]
- Maleki, L.; Kooraneh, A.E.; Derakhshi, H.T. Types of Epilepsies and Findings EEG-LORETA about Epilepsy. World Acad. Sci. Eng. Technol. Int. J. Soc. Behav. Educ. Econ. Bus. Ind. Eng. 2015, 9, 2382–2390. [Google Scholar]
- Wang, G.; Worrell, G.; Yang, L.; Wilke, C.; He, B. Interictal spike analysis of high-density EEG in patients with partial epilepsy. Clin. Neurophysiol. 2011, 122, 1098–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sohrabpour, A.; Lu, Y.; Kankirawatana, P.; Blount, J.; Kim, H.; He, B. Effect of EEG electrode number on epileptic source localization in pediatric patients. Clin. Neurophysiol. 2015, 126, 472–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bocquillon, P.; Dujardin, K.; Betrouni, N.; Phalempin, V.; Houdayer, E.; Bourriez, J.L.; Derambure, P.; Szurhaj, W. Attention impairment in temporal lobe epilepsy: A neurophysiological approach via analysis of the P300 wave. Hum. Brain Map. 2009, 30, 2267–2277. [Google Scholar] [CrossRef] [PubMed]
- Birot, G.; Spinelli, L.; Vulliémoz, S.; Mégevand, P.; Brunet, D.; Seeck, M.; Michel, C.M. Head model and electrical source imaging: A study of 38 epileptic patients. Neuroimage Clin. 2014, 5, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Hu, J.; Pan, L.; Wu, J.; Lang, L.; Jiang, S.; Gu, X.; Guo, J.; Zhou, L. Application of 256-channel dense array electroencephalographic source imaging in presurgical workup of temporal lobe epilepsy. Clin. Neurophysiol. 2016, 127, 108–116. [Google Scholar] [CrossRef]
- Akdeniz, G. Electrical source localization by LORETA in patients with epilepsy: Confirmation by postoperative MRI. Ann. Indian Acad. Neurol. 2016, 19, 37. [Google Scholar] [CrossRef]
- Nemtsas, P.; Birot, G.; Pittau, F.; Michel, C.M.; Schaller, K.; Vulliemoz, S.; Kimiskidis, V.K.; Seeck, M. Source localization of ictal epileptic activity based on high-density scalp EEG data. Epilepsia 2017, 58, 1027–1036. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.C.; Tucker, D.M.; Luu, P.; Jenson, K.; Tsai, J.J.; Ojemann, J.G.; Holmes, M.D. EEG source imaging of epileptic activity at seizure onset. Epilepsy Res. 2018, 146, 160–171. [Google Scholar] [CrossRef]
- Styliadis, C.; Kartsidis, P.; Paraskevopoulos, E.; Ioannides, A.A.; Bamidis, P.D. Neuroplastic effects of combined computerized physical and cognitive training in elderly individuals at risk for dementia: An eLORETA controlled study on resting states. Neural Plast. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Tsolaki, A.C.; Kosmidou, V.; Kompatsiaris, I.Y.; Papadaniil, C.; Hadjileontiadis, L.; Adam, A.; Tsolaki, M. Brain source localization of MMN and P300 ERPs in mild cognitive impairment and Alzheimer’s disease: A high-density EEG approach. Neurobiol. Aging 2017, 55, 190–201. [Google Scholar] [CrossRef]
- Gu, L.; Chen, J.; Gao, L.; Shu, H.; Wang, Z.; Liu, D.; Yan, Y.; Li, S.; Zhang, Z. Deficits of visuospatial working memory and executive function in single-versus multiple-domain amnestic mild cognitive impairment: A combined ERP and sLORETA study. Clin. Neurophysiol. 2019, 130, 739–751. [Google Scholar] [CrossRef] [PubMed]
- Tait, L.; Stothart, G.; Coulthard, E.; Brown, J.T.; Kazanina, N.; Goodfellow, M. Network Substrates of Cognitive Impairment in Alzheimer’s Disease. Clin. Neurophysiol. 2019, 130, 1581–1595. [Google Scholar] [CrossRef] [PubMed]
- Pizzagalli, D.A.; Peccoralo, L.A.; Davidson, R.J.; Cohen, J.D. Resting anterior cingulate activity and abnormal responses to errors in subjects with elevated depressive symptoms: A 128-channel EEG study. Hum. Brain Map. 2006, 27, 185–201. [Google Scholar] [CrossRef] [PubMed]
- Auerbach, R.P.; Stewart, J.G.; Stanton, C.H.; Mueller, E.M.; Pizzagalli, D.A. Emotion-processing biases and resting eeg activity in depressed adolescents. Depress. Anxiety 2015, 32, 693–701. [Google Scholar] [CrossRef]
- Auerbach, R.P.; Stanton, C.H.; Proudfit, G.H.; Pizzagalli, D.A. Self-referential processing in depressed adolescents: A high-density event-related potential study. J. Abnorm. Psychol. 2015, 124, 233. [Google Scholar] [CrossRef]
- Whitton, A.E.; Kakani, P.; Foti, D.; Van’t Veer, A.; Haile, A.; Crowley, D.J.; Pizzagalli, D.A. Blunted neural responses to reward in remitted major depression: A high-density event-related potential study. Biol. Psychiatry Cognit. Neurosci. Neuroimag. 2016, 1, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Whitton, A.E.; Deccy, S.; Ironside, M.L.; Kumar, P.; Beltzer, M.; Pizzagalli, D.A. Electroencephalography source functional connectivity reveals abnormal high-frequency communication among large-scale functional networks in depression. Biol. Psychiatry Cognit. Neurosci. Neuroimag. 2018, 3, 50–58. [Google Scholar] [CrossRef]
- Cuspineda, E.; Machado, C.; Virues, T.; Martínez-Montes, E.; Ojeda, A.; Valdés, P.; Bosch, J.; Valdes, L. Source analysis of alpha rhythm reactivity using LORETA imaging with 64-channel EEG and individual MRI. Clin. EEG Neurosci. 2009, 40, 150–156. [Google Scholar] [CrossRef]
- Fang, Y.; Daly, J.J.; Hansley, J.; Yao, W.X.; Yang, Q.; Sun, J.; Hvorat, K.; Pundik, S.; Yue, G.H. Hemispheric activation during planning and execution phases in reaching post stroke: A consort study. Medicine 2015, 94, e307. [Google Scholar] [CrossRef]
- McPherson, J.G.; Chen, A.; Ellis, M.D.; Yao, J.; Heckman, C.; Dewald, J.P. Progressive recruitment of contralesional cortico-reticulospinal pathways drives motor impairment post stroke. J. Physiol. 2018, 596, 1211–1225. [Google Scholar] [CrossRef]
- Park, H.J.; Kwon, J.S.; Youn, T.; Pae, J.S.; Kim, J.J.; Kim, M.S.; Ha, K.S. Statistical parametric mapping of LORETA using high density EEG and individual MRI: Application to mismatch negativities in schizophrenia. Hum. Brain Map. 2002, 17, 168–178. [Google Scholar] [CrossRef]
- Pae, J.S.; Kwon, J.S.; Youn, T.; Park, H.J.; Kim, M.S.; Lee, B.; Park, K.S. LORETA imaging of P300 in schizophrenia with individual MRI and 128-channel EEG. Neuroimage 2003, 20, 1552–1560. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hiramatsu, K.I.; Hokama, H.; Miyazato, H.; Ogura, C. Abnormalities of auditory P300 cortical current density in patients with schizophrenia using high density recording. Int. J. Psychophysiol. 2003, 47, 243–253. [Google Scholar] [CrossRef]
- Wang, J.; Tang, Y.; Li, C.; Mecklinger, A.; Xiao, Z.; Zhang, M.; Hirayasu, Y.; Hokama, H.; Li, H. Decreased P300 current source density in drug-naive first episode schizophrenics revealed by high density recording. Int. J. Psychophysiol. 2010, 75, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Michel, C.M.; Brunet, D. EEG source imaging: A practical review of the analysis steps. Front. Neurol. 2019, 10, 325. [Google Scholar] [CrossRef] [Green Version]
Event-Related Potentials | ||||||
---|---|---|---|---|---|---|
Author | ERP Component | Method | Number of EEG Electrodes | Head Model | ||
LORETA | sLORETA | eLORETA | ||||
Shigemura (2004) [37] | 0–500 ms | ✓ | 72 | template | ||
Kim (2006) [38] | 200–500 ms | ✓ | 128 | individual | ||
Brown (2008) [39] | P2 | ✓ | 61 | template | ||
Lamm (2012) [40] | N2 | ✓ | 64 | template | ||
Lamm (2014) [41] | N2 | ✓ | 64 | template | ||
Meyer (2013) [42] | N400 | ✓ | 128 | template | ||
Tremblay (2014) [43] | N1, P1 | ✓ | 128 | template | ||
Tsolaki (2015) [44] | MMN, P300, N400 | ✓ | 256 | template | ||
Tsolaki (2017) [45] | N170 | ✓ | 256 | template |
Epilepsy | |||||
---|---|---|---|---|---|
Author | Method | Number of EEG Electrodes | Head Model | ||
LORETA | sLORETA | eLORETA | |||
Bocquillon (2009) [50] | ✓ | 128 | individual | ||
Wang (2011) [48] | ✓ | 76, subset: 31 | individual | ||
Birot (2014) [51] | ✓ | 256, 128 | individual | ||
Sohrabpour (2015) [49] | ✓ | 128, subset: 96, 64, 32 | individual | ||
Feng (2016) [52] | ✓ | 256 | template | ||
Akdeniz (2016) [53] | ✓ | 64 | individual | ||
Nemtsas (2017) [54] | ✓ | 256, 128 | individual | ||
Kuo (2018) [55] | ✓ | 256 | individual |
Alzheimer’s Disease | |||||
---|---|---|---|---|---|
Author | Method | Number of EEG Electrodes | Head Model | ||
LORETA | sLORETA | eLORETA | |||
Styliadis (2015) [56] | ✓ | 57 | template | ||
Tsolaki (2017) [57] | ✓ | 256 | template | ||
Gu (2019) [58] | ✓ | 64 | template | ||
Tait (2019) [59] | ✓ | 64 | template |
Depression | |||||
---|---|---|---|---|---|
Author | Method | Number of EEG Electrodes | Head Model | ||
LORETA | sLORETA | eLORETA | |||
Pizzagalli (2006) [60] | ✓ | 128 | template | ||
Auerbach (2015) [61] | ✓ | 128 | template | ||
Auerbach (2015) [62] | ✓ | 128 | template | ||
Whitton (2016) [63] | ✓ | 128 | template | ||
Whitton (2018) [64] | ✓ | 128 | template |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dattola, S.; Morabito, F.C.; Mammone, N.; La Foresta, F. Findings about LORETA Applied to High-Density EEG—A Review. Electronics 2020, 9, 660. https://doi.org/10.3390/electronics9040660
Dattola S, Morabito FC, Mammone N, La Foresta F. Findings about LORETA Applied to High-Density EEG—A Review. Electronics. 2020; 9(4):660. https://doi.org/10.3390/electronics9040660
Chicago/Turabian StyleDattola, Serena, Francesco Carlo Morabito, Nadia Mammone, and Fabio La Foresta. 2020. "Findings about LORETA Applied to High-Density EEG—A Review" Electronics 9, no. 4: 660. https://doi.org/10.3390/electronics9040660
APA StyleDattola, S., Morabito, F. C., Mammone, N., & La Foresta, F. (2020). Findings about LORETA Applied to High-Density EEG—A Review. Electronics, 9(4), 660. https://doi.org/10.3390/electronics9040660