Inexpensive Millimeter-Wave Communication Channel Using Glow Discharge Detector and Satellite Dish Antenna
Abstract
:1. Introduction
2. Quasi-optical Design of the MMW Channel, Calculations and Alignment
3. Results
4. Conclusions
5. Patents
Author Contributions
Funding
Conflicts of Interest
References
- Rappaport, T.S.; Xing, Y.; Kanhere, O.; Ju, S.; Madanayake, A.; Mandal, S.; Alkhateeb, A.; Trichopoulos, G.C. Wireless Communications and Applications above 100 GHz: Opportunities and Challenges for 6G and Beyond. IEEE Access 2019, 7, 78729–78757. [Google Scholar] [CrossRef]
- Niu, Y.; Li, Y.; Jin, D.; Su, L.; Vasilakos, A.V. A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges. Wirel. Netw. 2015, 21, 2657–2676. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Xing, Y.; MacCartney, G.R.; Molisch, A.F.; Mellios, E.; Zhang, J. Overview of Millimeter Wave Communications for Fifth-Generation (5G) Wireless Networks—With a Focus on Propagation Models. IEEE Trans. Antennas Propag. 2017, 65, 6213–6230. [Google Scholar] [CrossRef]
- Kong, L.; Khan, M.; Wu, F.; Chen, G. Millimeter-Wave Wireless Communications for IoT-Cloud Supported Autonomous Vehicles. IEEE Commun. Mag. 2017, 55, 62–68. [Google Scholar] [CrossRef]
- Rogalski, A.; Sizov, F. Terahertz detectors and focal plane arrays. Opto-Electron. Rev. 2011, 19, 346–404. [Google Scholar] [CrossRef]
- Sizov, F.F. Terahertz radiation detectors: the state-of-the-art. Semicond. Sci. Technol. 2018, 33, 123001. [Google Scholar] [CrossRef]
- Ahamed, M.M.; Faruque, S. 5G backhaul: requirements, challenges, and emerging technologies. In Broadband Communications Networks—Recent Advances and Lessons from Practice; Haidine, A., Aqqal, A., Eds.; IntechOpen: London, UK, 2018; pp. 43–58. [Google Scholar]
- Jaber, M.; Imran, M.A.; Tafazolli, R.; Tukmanov, A. 5G Backhaul Challenges and Emerging Research Directions: A Survey. IEEE Access 2016, 4, 1743–1766. [Google Scholar] [CrossRef] [Green Version]
- Akram, A.A.; Rozban, D.; Klein, A.; Abramovich, A.; Yitzhaky, Y.; Kopeika, N.S. Detection and upconversion of three-dimensional MMW/THz images to the visible. Photon. Res. 2016, 4, 306. [Google Scholar]
- Abramovich, A.; Kopeika, N.S.; Rozban, D.; Farber, E. Inexpensive detector for terahertz imaging. Appl. Opt. 2007, 46, 7207–7211. [Google Scholar] [CrossRef]
- Rozban, D.; Abramovich, A.; Kopeika, N.S.; Farber, E. Terahertz detection mechanism of inexpensive sensitive glow discharge detector. J. Appl. Phys. 2008, 103, 093306-1–093306-4. [Google Scholar] [CrossRef]
- Abramovich, A.; Kopeika, N.S.; Rozban, D. THz Polarization Effects on Detection Responsivity of Glow Discharge Detectors (GDDs). IEEE Sens. J. 2009, 9, 1181–1184. [Google Scholar] [CrossRef]
- Rozban, D.; Levanon, A.; Joseph, H.; Akram, A.; Abramovich, A.; Kopeika, N.S.; Yitzhaky, Y.; Belenky, A.; Yadid-Pecht, O. Inexpensive THz Focal Plane Array Imaging Using Miniature Neon Indicator Lamps as Detectors. IEEE Sens. J. 2011, 11, 1962–1968. [Google Scholar] [CrossRef]
- Rozban, D.; Akram, A.A.; Levanon, A.; Abramovich, A.; Kopeika, N.S. W-Band Chirp Radar Mock-Up Using a Glow Discharge Detector. IEEE Sens. J. 2013, 13, 139–145. [Google Scholar] [CrossRef]
- Akram, A.A.; Rozban, D.; Kopeika, N.S.; Abramovich, A. Heterodyne detection at 300 GHz using neon indicator lamp glow discharge detector. Appl. Opt. 2013, 52, 4077–4082. [Google Scholar]
- Kopeika, N.S. Glow Discharge Detection of Long Wavelength Electromagnetic Radiation: Cascade Ionization Process Internal Signal Gain and Temporal and Spectral Response Properties. IEEE Trans. Plasma Sci. 1978, 6, 139–157. [Google Scholar] [CrossRef]
- Kopeika, N.S. On the mechanism of glow discharge detection of microwave and millimeter wave radiation. Proc. IEEE 1975, 63, 981–982. [Google Scholar] [CrossRef]
- Kopeika, N.; Farhat, N. Video detection of millimeter waves with glow discharge tubes: Part I—Physical description; part II—Experimental results. IEEE Trans. Electron. Devices 1975, 22, 534–548. [Google Scholar] [CrossRef]
- Akram, A.A.; Rozban, D.; Abramovich, A.; Yitzhaky, Y.; Kopeika, N.S. Terahertz Frequency Modulated Continuous Wave Radar using Glow Discharge Detector. IEEE Sens. J. 2016, 16, 1. [Google Scholar] [CrossRef]
- Levanon, A.; Kopeika, N.S.; Yitzhaky, Y.; Rozban, D.; Abramovich, A. Calibration Method for MMW Imaging Using Inexpensive Miniature Neon Indicator Lamp Detectors. IEEE Sens. J. 2014, 14, 1677–1681. [Google Scholar] [CrossRef]
- Shilemay, M.; Rozban, D.; Levanon, A.; Yitzhaky, Y.; Kopeika, N.S.; Yadid-Pecht, O.; Abramovich, A. Performance quantification of a millimeter-wavelength imaging system based on inexpensive glow-discharge-detector focal-plane array. Appl. Opt. 2013, 52, C43–C49. [Google Scholar] [CrossRef]
- Abramovich, A.; Kopeika, N.S.; Rozban, D. Design of inexpensive diffraction limited Focal Plane Arrays for mm wavelength and THz using glow discharge detector pixels. J. Appl. Phys. 2008, 104, 033302. [Google Scholar] [CrossRef]
- Ben-Laish, M.; Rozban, D.; Aharon, A.; Abramovich, A.; Yitzhaky, Y.; Kopeika, N. QPSK detection using glow discharge detector and a photodiode for millimeter-wave and terahertz communication. Microw. Opt. Technol. Lett. 2020. [Google Scholar] [CrossRef]
- Custom VDI Transmitters: TX272. Available online: https://vadiodes.com/en/products/custom-transmitters (accessed on 31 October 2017).
- Goldsmith, P. Quasioptical Systems: Gaussian Beam Quasioptical Propagation and Applications; Wiley-IEEE Press: Piscataway, NJ, USA, 1998. [Google Scholar]
- Rudge, A.W.; Milne, K. (Eds.) The Handbook of Antenna Design; Peter Peregrinus Ltd.: London, UK, 1982. [Google Scholar]
- Olver, A.D.; Clarricoats, P.J.B.; Shafai, L.; Kishk, A.A. Microwave Horns and Feeds; IEE Electromagnetic Waves Series; The Institution of Electrical Engineers: London, UK, 1994. [Google Scholar]
- Gandhi Om, P. Microwave Engineering & Applications; Pergamon Press: Oxford, UK, 1981. [Google Scholar]
- Johansson, J.; Whyborn, N. The diagonal horn as a sub-millimeter wave antenna. IEEE Trans. Microw. Theory Tech. 1992, 40, 795–800. [Google Scholar] [CrossRef]
- Elganimi, T.Y. Studying the BER performance, power- and bandwidth- efficiency for FSO communication systems under various modulation schemes. In Proceedings of the 2013 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), Amman, Jordan, 3–5 December 2013. [Google Scholar]
Distance between transmitter and receiver [m] | 15 | 20 | 50 | 100 | 500 |
Beam waist on the Transmitting dish [mm] | 92 | 92 | 92 | 92 | 92 |
Beam waist on the receiving dish [mm] | 175 | 220 | 518 | 1031 | 5161 |
Percentage of total power collected by the receiving dish. | 100% | 99.86% | 69% | 26% | 1.2% |
Percentage of total power collected by the GDD detector (effective aperture diameter of 1 mm). | 1.64% | 1.62% | 1.13% | 0.42% | 0.019% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kahana, L.; Rozban, D.; Gihasi, M.; Abramovich, A.; Yitzhaky, Y.; Kopeika, N. Inexpensive Millimeter-Wave Communication Channel Using Glow Discharge Detector and Satellite Dish Antenna. Electronics 2020, 9, 677. https://doi.org/10.3390/electronics9040677
Kahana L, Rozban D, Gihasi M, Abramovich A, Yitzhaky Y, Kopeika N. Inexpensive Millimeter-Wave Communication Channel Using Glow Discharge Detector and Satellite Dish Antenna. Electronics. 2020; 9(4):677. https://doi.org/10.3390/electronics9040677
Chicago/Turabian StyleKahana, Lidor, Daniel Rozban, Moshe Gihasi, Amir Abramovich, Yitzhak Yitzhaky, and Natan Kopeika. 2020. "Inexpensive Millimeter-Wave Communication Channel Using Glow Discharge Detector and Satellite Dish Antenna" Electronics 9, no. 4: 677. https://doi.org/10.3390/electronics9040677
APA StyleKahana, L., Rozban, D., Gihasi, M., Abramovich, A., Yitzhaky, Y., & Kopeika, N. (2020). Inexpensive Millimeter-Wave Communication Channel Using Glow Discharge Detector and Satellite Dish Antenna. Electronics, 9(4), 677. https://doi.org/10.3390/electronics9040677