A New Intra-Cluster Scheduling Scheme for Real-Time Flows in Wireless Sensor Networks
Abstract
:1. Introduction
2. Proposed Scheme
Procedure of the Proposed Scheme
3. Performance Evaluation
3.1. Impact of Deadline
3.2. Impact of Flows
3.3. Impact of Clusters
3.4. Impact of Intra-Cluster Time Slots
3.5. IntraSend Time Slots Utilization
3.6. IntraRecv Time Slots Utilization
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jin, X.; Saifullah, A.; Lu, C.; Zeng, P. Real-Time Scheduling for Event-Triggered and Time-Triggered Flows in Industrial Wireless Sensor-Actuator Networks. In Proceedings of the IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019. [Google Scholar]
- Soua, R.; Minet, P. Multichannel assignment protocols in wireless sensor networks: A comprehensive survey. Pervasive Mob. Comput. 2015, 16, 2–21. [Google Scholar]
- Bhatia, A.; Hansdah, R.C. A Distributed TDMA Slot Scheduling Algorithm for Spatially Correlated Contention in WSNs. Mob. Inf. Syst. 2015. [Google Scholar] [CrossRef] [Green Version]
- Bakshi, M.; Jaumard, B.; Kaddour, M.; Narayanan, L. On TDMA scheduling in wireless sensor networks. In Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Vancouver, BC, Canada, 15–18 May 2016; pp. 1–6. [Google Scholar]
- Ramanathan, S.; Lloyd, E.L. Scheduling algorithms for multi-hop radio networks. IEEE/ACM Trans. Netw. 1993, 1, 166–177. [Google Scholar] [CrossRef]
- Ali, G.; Kim, K.H.; Kim, K.; Aldwairi, M. Interference Aware Real-Time Flows Scheduling in Cluster Based Wireless Sensor Networks. Int. J. Eng. Technol. Innov. 2016, 6, 93–102. [Google Scholar]
- Gobinath, T.; Tamilarasi, A. RFDCAR: Robust failure node detection and dynamic congestion aware routing with network coding technique for wireless sensor network. Peer Peer Netw. Appl. 2019. [Google Scholar] [CrossRef]
- Umar, I.A.; Hanapi, Z.M.; Sali, A.; Zulkarnain, Z.A. Towards overhead mitigation in state-free geographic forwarding protocols for wireless sensor networks. Wirel. Netw. 2019, 25, 1017–1030. [Google Scholar] [CrossRef]
- Lenka, M.R.; Swain, A.R.; Sahoo, M.N. Distributed Slot Scheduling Algorithm for Hybrid CSMA/TDMA MAC in Wireless Sensor Networks. In Proceedings of the IEEE International Conference on Networking, Architecture and Storage (NAS), Long Beach, CA, USA, 8–10 August 2016; pp. 1–4. [Google Scholar]
- Xuelin, C.; Zuxun, S. An overview of slot assignment (SA) for TDMA. In Proceedings of the IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Ningbo, China, 19–22 September 2015; pp. 1–5. [Google Scholar]
- Di Francesco, M.; Pinotti, C.M.; Das, S.K. Interferencefree scheduling with bounded delay in cluster-tree wireless sensor networks. In Proceedings of the 15th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, New York, NY, USA, 21–25 October 2012; pp. 99–106. [Google Scholar]
- Chatterjee, P.; Ghosh, S.C.; Das, N. Load Balanced Coverage with Graded Node Deployment in Wireless Sensor Networks. IEEE Trans. Multi-Scale Comput. Syst. 2017, 3, 100–112. [Google Scholar] [CrossRef]
- Oladimeji, M.O.; Turkey, M.; Dudley, S. HACH: Heuristic Algorithm for Clustering Hierarchy protocol in wireless sensor networks. Appl. Soft Comput. 2017, 55, 452–461. [Google Scholar] [CrossRef]
- Hasan, M.Z.; Al-Rizzo, H.; Al-Turjman, F. A Survey on Multipath Routing Protocols for QoS Assurances in Real-Time Wireless Multimedia Sensor Networks. IEEE Commun. Surv. Tutor. 2017, 19, 1424–1456. [Google Scholar] [CrossRef]
- Rhee, I.; Warrier, A.; Min, J.; Xu, L. DRAND: Distributed Randomized TDMA Scheduling for Wireless Ad Hoc Networks. IEEE Trans. Mob. Comput. 2009, 8, 1384–1396. [Google Scholar] [CrossRef]
- Li, Y.; Chen, C.S.; Song, Y.Q.; Wang, Z. Real-Time QOS Support in Wireless Sensor Networks: A survey. IFAC Prec. Vol. 2007, 40, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Diallo, O.; Rodrigues, J.C.; Sene, M. Real-time data management on wireless sensor networks: A survey. J. Net. Comp App. 2012, 35, 1013–1021. [Google Scholar] [CrossRef]
- Suriyachai, P.; Brown, J.; Roedig, U. Time-critical data delivery in wireless sensor networks. In Proceedings of the 6th IEEE International Conference on Distributed Computing in Sensor Systems, Santa Barbara, CA, USA, 21–23 June 2010; pp. 216–229. [Google Scholar]
- Zhang, H.; Soldati, P.; Johansson, M. Optimal link scheduling and channel assignment for convergecast in linear WirelessHART networks. In Proceedings of the WiOPT, Seoul, Korea, 23–27 June 2009. [Google Scholar]
- Saifullah, A.; Xu, Y.; Lu, C.; Chen, Y. End-to-end delay analysis for fixed priority scheduling in WirelessHART networks. In Proceedings of the 17th IEEE Real-Time and Embedded Technology and Applications Symposium, Chicago, IL, USA, 11–14 April 2011; pp. 13–22. [Google Scholar]
- Saifullah, A.; Xu, Y.; Lu, C.; Chen, Y. Real-time scheduling for WirelessHART networks. In Proceedings of the 31st IEEE Real-Time Systems Symposium, San Diego, CA, USA, 30 November–3 December 2010. [Google Scholar]
- Cheng, P.; Zhang, F.; Chen, J.; Sun, Y.; Shen, X. A Distributed TDMA Scheduling Algorithm for Target Tracking in Ultrasonic Sensor Networks. IEEE Tran Ind. Elect. 2013, 60, 3836–3845. [Google Scholar] [CrossRef]
- Pawar, P.M.; Nielsen, R.H.; Prasad, N.R.; Ohmori, S.; Prasad, R. M-GCF: Multicolor-Green Conict Free scheduling algorithm for WSN. In Proceedings of the 15th International Symposium on Wireless Personal Multimedia Communications, Taipei, Taiwan, 24–27 September 2012; pp. 143–147. [Google Scholar]
- Ergen, S.C.; Varaiya, P. TDMA scheduling algorithms for wireless sensor networks. Wirel. Netw. 2010, 16, 985–997. [Google Scholar] [CrossRef] [Green Version]
- Pawar, P.M.; Nielsen, R.H.; Prasad, N.R.; Ohmori, S.; Prasad, R. GCF: Green Conflict Free TDMA scheduling for wireless sensor network. In Proceedings of the IEEE International Conference on Communications (ICC), Ottawa, ON, Canada, 10–15 June 2012; pp. 5726–5730. [Google Scholar]
- Huang, P.; Xiao, L.; Soltani, S.; Mutka, M.W.; Xi, N. The Evolution of MAC Protocols in Wireless Sensor Networks: A Survey. IEEE Comm. Sur. Tut. 2013, 15, 101–120. [Google Scholar] [CrossRef]
- Pawar, P.M.; Nielsen, R.H.; Prasad, N.R.; Prasad, R. H-GCF: A Hybrid Green Conflict Free scheduling algorithm for mobile Wireless Sensor Networks. In Proceedings of the 16th International Symposium on Wireless Personal Multimedia Communications, Atlantic City, NJ, USA; 2013; pp. 1–5. [Google Scholar]
- Ali, G.; Kang, S.; Kim, K.H.; Kim, K. Towards Cluster-Based Real-Time Flow Scheduling in Interference-Aware Wireless Sensor Networks. In Proceedings of the IEEE 16th International Conference on Computational Science and Engineering, Sydney, Australia, 3–5 December 2013; pp. 523–530. [Google Scholar]
- Pawar, P.M.; Kulkarni, N.P.; Mantri, D.S. Secure Scheduling for Cluster-based TDMA Schedule MAC in Wireless Sensor Network. In Proceedings of the IEEE Global Conference on Wireless Computing and Networking (GCWCN), Lonavala, India, 23–24 November 2018; pp. 119–123. [Google Scholar]
- Camilo, T.; Silva, J.S.; Rodrigues, S.A.; Boavida, F. GENSEN: A topology generator for real wireless sensor networks deployment. In Proceedings of the 5th IFIP Workshop on Software Technologies for Future Embedded & Ubiquitous Systems (SEUS 2007), Santorini, Greece, 7–8 May 2007. [Google Scholar]
Previous IntraSend Scheduling | ||||||
---|---|---|---|---|---|---|
Cluster | Flow# | 1 | 5 | 9 | ||
H1 | F1 | 0 | a→b | b→H1 | 5 | |
F5 | 0 | j→c | c→H1 | 9 | ||
H2 | F2 | 0 | i→h | h→H2 | 5 | |
F3 | 0 | p→H2 | 1 | |||
F4 | 0 | e→g | g→H2 | 9 |
Previous InterComm Scheduling | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Flow# | 2 | 3 | 6 | 7 | 10 | 11 | 14 | 15 | 18 | ||
F1 | 5 | H1→H3 | H3→H5 | 7 | |||||||
F2 | 5 | H2→H1 | H1→H3 | 11 | |||||||
F3 | 1 | H2→H4 | H4→H5 | 3 | |||||||
F4 | 9 | H2→H4 | H4→H3 | 14 | |||||||
F5 | 9 | H1→H2 | H2→H4 | 18 |
Previous IntraRecv Scheduling | |||||||||
---|---|---|---|---|---|---|---|---|---|
Cluster | Flow# | 4 | 8 | 12 | 16 | 20 | 24 | ||
H5 | F1 | 7 | H5→m | m→q | 12 | ||||
F5 | 18 | H5→n | n→t | 24 | |||||
H3 | F2 | 11 | H3→k | k→l | 16 | ||||
F4 | 14 | H3→d | 16 | ||||||
H4 | F3 | 3 | H4→r | r→o | 8 |
IntraSend Scheduling | ||||||
---|---|---|---|---|---|---|
Cluster | Flow# | 1 | 4 | 5 | ||
H1 | F1 | 0 | a→b | b→H1 | 4 | |
F5 | 0 | j→c | c→H1 | 5 | ||
H2 | F2 | 0 | i→h | h→H2 | 4 | |
F3 | 0 | p→H2 | 1 | |||
F4 | 0 | e→g | g→H2 | 5 |
InterComm Scheduling | ||||||||
---|---|---|---|---|---|---|---|---|
Flow# | 2 | 3 | 6 | 7 | 10 | 11 | ||
F1 | 4 | H1→H3 | H3→H5 | 7 | ||||
F2 | 4 | H2→H1 | H1→H3 | 11 | ||||
F3 | 1 | H2→H4 | H4→H5 | 3 | ||||
F4 | 5 | H2→H4 | H4→H3 | 10 | ||||
F5 | 4 | H1→H2 | H2→H4 | 11 |
IntraRecv Scheduling | |||||||||
---|---|---|---|---|---|---|---|---|---|
Cluster | Flow# | 4 | 5 | 8 | 9 | 12 | 13 | ||
H5 | F1 | 7 | H5→m | m→q | 9 | ||||
F5 | 11 | H5→n | n→t | 13 | |||||
H3 | F2 | 11 | H3→k | k→l | 13 | ||||
F4 | 10 | H3→d | 12 | ||||||
H4 | F3 | 3 | H4→r | r→o | 5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, G.; Moreira, F.; Alfandi, O.; Shah, B.; Ilyas, M. A New Intra-Cluster Scheduling Scheme for Real-Time Flows in Wireless Sensor Networks. Electronics 2020, 9, 683. https://doi.org/10.3390/electronics9040683
Ali G, Moreira F, Alfandi O, Shah B, Ilyas M. A New Intra-Cluster Scheduling Scheme for Real-Time Flows in Wireless Sensor Networks. Electronics. 2020; 9(4):683. https://doi.org/10.3390/electronics9040683
Chicago/Turabian StyleAli, Gohar, Fernando Moreira, Omar Alfandi, Babar Shah, and Mohammed Ilyas. 2020. "A New Intra-Cluster Scheduling Scheme for Real-Time Flows in Wireless Sensor Networks" Electronics 9, no. 4: 683. https://doi.org/10.3390/electronics9040683
APA StyleAli, G., Moreira, F., Alfandi, O., Shah, B., & Ilyas, M. (2020). A New Intra-Cluster Scheduling Scheme for Real-Time Flows in Wireless Sensor Networks. Electronics, 9(4), 683. https://doi.org/10.3390/electronics9040683