SMO-DNN: Spider Monkey Optimization and Deep Neural Network Hybrid Classifier Model for Intrusion Detection
Abstract
:1. Introduction
- -
- Network-based IDS (NIDS)—It is an independent platform that detects intrusions by monitoring the network traffic and hosts.
- -
- Host-based IDS (HIDS)—It has an agent on the host that detects intrusions by monitoring system calls and application logs.
- -
- Protocol-based IDS (PIDS)—It is normally installed on the webserver and it analyses the protocol in the computer system.
- -
- Application protocol-based IDS (APIDS)—Focuses on monitoring of the specific application protocol used by the computer system.
- -
- Hybrid IDS (HIDS)—Combination of multiple IDS approaches frame an HIDS, in which host agent and system data are both used to develop the complete perspective of the network system.
- -
- Propose an efficient approach for data transformation and standardization
- -
- Propose an optimized dimensionality reduction technique, to select the best features for training the machine learning model, to generate output with enhanced accuracy
- -
- Efficient pre-processing to select optimal features influencing the classification results,
- -
- using a hybrid SMO-DNN approach.
- -
- Introducing a novel fitness function for spider monkey optimization.
- -
- Optimizing the training time by dimensionality reduction and hence, lessening the burden
- -
- of the DNN.
2. Related Work
3. Background
3.1. Network Intrusion Detection System
3.2. Deep Neural Network
3.3. Nature-Inspired Algorithms
- Metaheuristic techniques can be as simple as a local search process oras complex as a learning process.
- Metaheuristic algorithms generally result in an approximate solution.
- Metaheuristic algorithms are mostly non-deterministic.
- Metaheuristics are non-problem-specific algorithms.
3.4. Spider Monkey Optimization Algorithm
- 1)
- Labor division: Spider monkeys divide their foraging work by making smaller groups.
- 2)
- Self-organization: Size of the groups is selected to meet the required food availability.
- The swarm initiates food searching.
- Computing distance of individuals from food sources.
- The distance of the individuals from the food group members when altering their locations should be taken into consideration.
- Again, the distance of the individuals from a food source is calculated [44].
3.4.1. Key Steps of SMO algorithm implementation
Initializing the population
Local Leader Phase (LLP)
Global Leader Phase (GLP)
Global Leader Learning (GLL) Phase
Local Leader Learning (LLL) Phase
Local Leader Decision (LLD) Phase
Global Leader Decision (GLD) Phase
- Value of LocalLeaderLimit
- GlobalLeaderLimit
- Max number of group (MG)
- Perturbation rate (pr)
4. SMO-DNN Hybrid Classifier Model
4.1. Dataset Selection
4.2. Data pre-processing
4.2.1. Min-Max Normalization
4.2.2. 1-N Encoding Technique
4.3. Dimension Reduction using SMO
4.4. Data Output
4.5. Data Splitting
4.6. Intrusion Detection Using Deep Neural Network
5. Results and Discussion
5.1. Dataset Description
5.2. Evaluation Metrics
5.3. Performance Evaluation
5.4. Discussion
- An extensive pre-processing has been performed to normalize, transform the dataset for better predictions.
- A novel SMO-DNN model is proposed for feature engineering for selecting the best features (attributes) which positively affect the classification accuracy. The convergence rate and the fitness function used in SMO resulted in better classification results when compared with existing models.
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liao, H.J.; Lin, C.H.R.; Lin, Y.C.; Tung, K.Y. Intrusion detection system: A comprehensive review. J. Netw. Comput. Appl. 2013, 36, 16–24. [Google Scholar] [CrossRef]
- Iwendi, C.; Uddin, M.; Ansere, J.A.; Nkurunziza, P.; Anajemba, J.H.; Bashir, A.K. On detection of Sybil attack in large-scale VANETs using spider-monkey technique. IEEE Access 2018, 6, 47258–47267. [Google Scholar] [CrossRef]
- Kuang, F.; Xu, W.; Zhang, S. A novel hybrid KPCA and SVM with GA model for intrusion detection. Appl. Soft Comput. 2014, 18, 178–184. [Google Scholar] [CrossRef]
- Yin, C.; Zhu, Y.; Fei, J.; He, X. A deep learning approach for intrusion detection using recurrent neural networks. IEEE Access 2017, 5, 21954–21961. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, Y.; Zhou, H.; Zhang, J.; Sun, J. Testing and defending methods against DoS attack in state estimation. Asian J. Control 2017, 19, 1295–1305. [Google Scholar] [CrossRef]
- Aljawarneh, S.; Aldwairi, M.; Yassein, M.B. Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model. J. Comput. Sci. 2018, 25, 152–160. [Google Scholar] [CrossRef]
- Peng, F.; Qin, L.; Long, M. Face presentation attack detection using guided scale texture. Multimed. Tools Appl. 2018, 77, 8883–8909. [Google Scholar] [CrossRef]
- Arul, R.; Moorthy, R.S.; Bashir, A.K. Ensemble Learning Mechanisms for Threat Detection: A Survey. In Machine Learning and Cognitive Science Applications in Cyber Security; IGI Global: Hershey, PA, USA, 2019; pp. 240–281. [Google Scholar]
- Agrawal, G.; Soni, S.K.; Agrawal, C. A survey on attacks and approaches of intrusion detection systems. Int. J. Adv. Res. Comput. Sci. 2017, 8, 499–504. [Google Scholar] [CrossRef]
- Benkhelifa, E.; Welsh, T.; Hamouda, W. A critical review of practices and challenges in intrusion detection systems for IoT: Toward universal and resilient systems. IEEE Commun. Surv. Tutor. 2018, 20, 3496–3509. [Google Scholar] [CrossRef]
- Jin, H.; Xiang, G.; Zou, D.; Wu, S.; Zhao, F.; Li, M.; Zheng, W. A VMM-based intrusion prevention system in cloud computing environment. J. Supercomput. 2013, 66, 1133–1151. [Google Scholar] [CrossRef]
- Zarpelão, B.B.; Miani, R.S.; Kawakani, C.T.; de Alvarenga, S.C. A survey of intrusion detection in Internet of Things. J. Netw. Comput. Appl. 2017, 84, 25–37. [Google Scholar] [CrossRef]
- Raza, S.; Wallgren, L.; Voigt, T. SVELTE: Real-time intrusion detection in the Internet of Things. Ad hoc Netw. 2013, 11, 2661–2674. [Google Scholar] [CrossRef]
- Haq, N.F.; Onik, A.R.; Hridoy, M.A.K.; Rafni, M.; Shah, F.M.; Farid, D.M. Application of machine learning approaches in intrusion detection system: A survey. Ijarai-Int. J. Adv. Res. Artif. Intell. 2015, 4, 9–18. [Google Scholar]
- Buczak, A.L.; Guven, E. A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun. Surv. Tutor. 2015, 18, 1153–1176. [Google Scholar] [CrossRef]
- Chiba, Z.; Abghour, N.; Moussaid, K.; Rida, M. Intelligent approach to build a Deep Neural Network based IDS for cloud environment using combination of machine learning algorithms. Comput. Secur. 2019, 86, 291–317. [Google Scholar] [CrossRef]
- Bansal, J.C.; Sharma, H.; Jadon, S.S.; Clerc, M. Spider monkey optimization algorithm for numerical optimization. Memetic Comput. 2014, 6, 31–47. [Google Scholar] [CrossRef]
- Agrawal, V.; Rastogi, R.; Tiwari, D. Spider monkey optimization: A survey. Int. J. Syst. Assur. Eng. Manag. 2018, 9, 929–941. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, A.; Panigrahi, B.K.; Kiran, D.; Kumar, R. Ageist spider monkey optimization algorithm. Swarm Evol. Comput. 2016, 28, 58–77. [Google Scholar] [CrossRef]
- Garg, S.; Kaur, K.; Kumar, N.; Kaddoum, G.; Zomaya, A.Y.; Ranjan, R. A hybrid deep learning-based model for anomaly detection in cloud data center networks. IEEE Trans. Netw. Serv. Manag. 2019, 16, 924–935. [Google Scholar] [CrossRef]
- Benmessahel, I.; Xie, K.; Chellal, M.; Semong, T. A new evolutionary neural networks based on intrusion detection systems using locust swarm optimization. Evol. Intell. 2019, 12, 131–146. [Google Scholar] [CrossRef]
- Alamiedy, T.A.; Anbar, M.; Alqattan, Z.N.; Alzubi, Q.M. Anomaly based intrusion detection system using multi-objective grey wolf optimisation algorithm. J. Ambient Intell. Humaniz. Comput. 2019, 1–22. [Google Scholar] [CrossRef]
- Selvakumar, B.; Muneeswaran, K. Firefly algorithm based feature selection for network intrusion detection. Comput. Secur. 2019, 81, 148–155. [Google Scholar]
- Kancharla, G.R.; Eluri, N.R.; Dara, S.; Ansari, N. An efficient algorithm for feature selection problem in gene expression data: A spider monkey optimization approach. SSRN Electron. J. 2019. [Google Scholar] [CrossRef]
- Gupta, K.; Deep, K.; Bansal, J.C. Spider monkey optimization algorithm for constrained optimization problems. Soft Comput. 2017, 21, 6933–6962. [Google Scholar] [CrossRef]
- Arivudainambi, D.; Kumar, V.K.A.; Chakkaravarthy, S.S. Lion ids: A Meta heuristics approach to detect ddos attacks against software-defined networks. Neural Comput. Appl. 2019, 31, 1491–1501. [Google Scholar] [CrossRef]
- Shokoohsaljooghi, A.; Mirvaziri, H. Performance improvement of intrusion detection system using neural networks and particle swarm optimization algorithms. Int. J. Inf. Technol. 2019, 1–12. [Google Scholar] [CrossRef]
- Ma, T.; Wang, F.; Cheng, J.; Yu, Y.; Chen, X. A hybrid spectral clustering and deep neural network ensemble algorithm for intrusion detection in sensor networks. Sensors 2016, 16, 1701. [Google Scholar] [CrossRef] [Green Version]
- Lang, G.; Li, Q.; Cai, M.; Yang, T.; Xiao, Q. Incremental approaches to knowledge reduction based on characteristic matrices. Int. J. Mach. Learn. Cybern. 2017, 8, 203–222. [Google Scholar] [CrossRef]
- Cai, Z.-W.; Huang, L.-H. Finite-time synchronization by switching state-feedback control for discontinuous Cohen–Grossberg neural networks with mixed delays. Int. J. Mach. Learn. Cybern. 2018, 9, 1683–1695. [Google Scholar] [CrossRef]
- Wang, D.; Huang, L.; Tang, L. Dissipativity and synchronization of generalized BAM neural networks with multivariate discontinuous activations. IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 3815–3827. [Google Scholar]
- Kuang, F.; Zhang, S.; Jin, Z.; Xu, W. A novel SVM by combining kernel principal component analysis and improved chaotic particle swarm optimization for intrusion detection. Soft Comput. 2015, 19, 1187–1199. [Google Scholar] [CrossRef]
- Wang, X.; Mao, H.; Hu, H.; Zhang, Z. Crack localization in hydraulic turbine blades based on kernel independent component analysis and wavelet neural network. Int. J. Comput. Intell. Syst. 2013, 6, 1116–1124. [Google Scholar] [CrossRef] [Green Version]
- Lang, G.; Cai, M.; Fujita, H.; Xiao, Q. Related families-based attribute reduction of dynamic covering decision information systems. Knowl.-Based Syst. 2018, 162, 161–173. [Google Scholar] [CrossRef]
- Huang, C.; Liu, B. New studies on dynamic analysis of inertial neural networks involving non-reduced order method. Neurocomputing 2019, 325, 283–287. [Google Scholar] [CrossRef]
- Reddy, G.T.; Reddy, M.P.K.; Lakshmanna, K.; Kaluri, R.; Rajput, D.S.; Srivastava, G.; Baker, T. Analysis of Dimensionality Reduction Techniques on Big Data. IEEE Access 2020, 8, 54776–54788. [Google Scholar] [CrossRef]
- Hegazy, A.E.; Makhlouf, M.A.; El-Tawel, G.S. Dimensionality Reduction Using an Improved Whale Optimization Algorithm for Data Classification. Int. J. Mod. Educ. Comput. Sci. 2018, 7, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Mehibs, S.M.; Hashim, S.H. Proposed network intrusion detection system in cloud environment based on back propagation neural network. J. Univ. Babylon Pure Appl. Sci. 2018, 26, 29–40. [Google Scholar]
- Deng, L.; Yu, D. Deep learning: Methods and applications. Found. Trends® Signal. Process. 2014, 7, 197–387. [Google Scholar] [CrossRef] [Green Version]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680. [Google Scholar]
- Reddy, G.T.; Khare, N. Heart disease classification system using optimised fuzzy rule based algorithm. Int. J. Biomed. Eng. Technol. 2018, 27, 183–202. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Kaluri, R.; Singh, S.; Alazab, M.; Tariq, U. A Novel PCA-Firefly based XGBoost classification model for Intrusion Detection in Networks using GPU. Electronics 2020, 9, 219. [Google Scholar] [CrossRef] [Green Version]
- Gadekallu, T.R.; Khare, N.; Bhattacharya, S.; Singh, S.; Reddy Maddikunta, P.K.; Ra, I.H.; Alazab, M. Early Detection of Diabetic Retinopathy Using PCA-Firefly Based Deep Learning Model. Electronics 2020, 9, 274. [Google Scholar] [CrossRef] [Green Version]
- Spider Monkey Optimisation Algorithm. Available online: http://smo.scrs.in/ (accessed on 19 March 2020).
- Iwendi, C.; Maddikunta, P.K.R.; Gadekallu, T.R.; Lakshmanna, K.; Bashir, A.K.; Piran, M.J. A metaheuristic optimization approach for energy efficiency in the IoT networks. Softw. Pract. Exp. 2020. [Google Scholar] [CrossRef]
- Ji, Y.; Liu, L.; Wang, H.; Liu, Z.; Niu, Z.; Denby, B. Updating the Silent Speech Challenge benchmark with deep learning. Speech Commun. 2018, 98, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.-S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214. [Google Scholar]
- Sultan, S.; Javed, A.; Irtaza, A.; Dawood, H.; Dawood, H.; Bashir, A.K. A hybrid egocentric video summarization method to improve the healthcare for Alzheimer patients. J. Ambient Intell. Humaniz. Comput. 2019, 10, 4197–4206. [Google Scholar] [CrossRef]
- Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 8–10 July 2009; pp. 1–6. [Google Scholar]
No | Feature Name | No | Feature Name | No | Feature Name |
---|---|---|---|---|---|
1 | Duration | 15 | Su_attempted | 29 | Same_srv_rate |
2 | Protocol_type | 16 | Num_root | 30 | Diff_srv_rate |
3 | Service | 17 | Num_file_creations | 31 | Srv_diff_host_ rate |
4 | Flag | 18 | Num_shells | 32 | Dst_host_count |
5 | Src_bytes | 19 | Num_access_files | 33 | Dst_host_srv_ count |
6 | Dst_bytes | 20 | Num_outbound_cmds | 34 | Dst_host_same _srv_rate |
7 | Land | 21 | Is_hot_login | 35 | Dst_host_diff_ srv_rate |
8 | Wrong_fragment | 22 | Is_guest_login | 36 | Dst_host_same _src_port_rate |
9 | Urgent | 23 | Count | 37 | Dst_host_srv_ diff_host_rate |
10 | Host | 24 | Srv_count | 38 | Dst_host_serror_rate |
11 | Num_failed _logins | 25 | Serror_rate | 39 | Dst_host_srv_serror_rate |
12 | Logged_in | 26 | Srv_serror_rate | 40 | Dst_host_rerror_rate |
13 | Num_compromised | 27 | Rerror_rate | 41 | Dst_host_rerror_rate |
14 | Root_shell | 28 | Srv_rerror_rate |
Evaluation Metric | Equation |
---|---|
Accuracy | |
Precision | |
Recall | |
F1—score | |
Sensitivity | |
Specificity |
Model | SMO+DNN | PCA+DNN | DNN |
---|---|---|---|
Accuracy | 0.994 | 0.938 | 0.914 |
Precision | 0.995 | 0.934 | 0.891 |
Recall | 0.995 | 0.918 | 0.882 |
F-score | 0.996 | 0.937 | 0.905 |
Sensitivity | 0.994 | 0.938 | 0.908 |
Specificity | 0.996 | 0.926 | 0.898 |
Time complexity (min) | 65 | 72 | 90 |
Model | SMO+DNN | PCA+DNN | DNN |
---|---|---|---|
Accuracy | 0.928 | 0.898 | 0.909 |
Precision | 0.927 | 0.884 | 0.896 |
Recall | 0.928 | 0.898 | 0.909 |
F-score | 0.927 | 0.882 | 0.894 |
Sensitivity | 0.928 | 0.898 | 0.909 |
Specificity | 0.930 | 0.885 | 0.882 |
Time complexity (min) | 80 | 120 | 170 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khare, N.; Devan, P.; Chowdhary, C.L.; Bhattacharya, S.; Singh, G.; Singh, S.; Yoon, B. SMO-DNN: Spider Monkey Optimization and Deep Neural Network Hybrid Classifier Model for Intrusion Detection. Electronics 2020, 9, 692. https://doi.org/10.3390/electronics9040692
Khare N, Devan P, Chowdhary CL, Bhattacharya S, Singh G, Singh S, Yoon B. SMO-DNN: Spider Monkey Optimization and Deep Neural Network Hybrid Classifier Model for Intrusion Detection. Electronics. 2020; 9(4):692. https://doi.org/10.3390/electronics9040692
Chicago/Turabian StyleKhare, Neelu, Preethi Devan, Chiranji Lal Chowdhary, Sweta Bhattacharya, Geeta Singh, Saurabh Singh, and Byungun Yoon. 2020. "SMO-DNN: Spider Monkey Optimization and Deep Neural Network Hybrid Classifier Model for Intrusion Detection" Electronics 9, no. 4: 692. https://doi.org/10.3390/electronics9040692
APA StyleKhare, N., Devan, P., Chowdhary, C. L., Bhattacharya, S., Singh, G., Singh, S., & Yoon, B. (2020). SMO-DNN: Spider Monkey Optimization and Deep Neural Network Hybrid Classifier Model for Intrusion Detection. Electronics, 9(4), 692. https://doi.org/10.3390/electronics9040692