Electromagnetic Field Levels in Built-up Areas with an Irregular Grid of Buildings: Modeling and Integrated Software
Abstract
:1. Introduction
2. The Estimation of EM Field Levels
Modified Version of the COST 231– Walfisch–Ikegami Model
- the height of the buildings in the given scenario (hroof);
- the width of the roads in the built-up area (w);
- the building separation (b);
- the road orientation with respect to the radio path (φ).
3. Onde Chiare Project
3.1. System Design
3.2. Onde Chiare App
4. Model and System Validation: Measurement Campaign
5. Results
6. Conclusion and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Prasad, M.V.S.N.; Gupta, S.; Gupta, M.M. Comparison of 1.8 GHz Cellular Outdoor Measurement with AWAS Electromagnetic Code and Conventional Models Over Urban and Suburban Regions of Northern India. IEEE Antennas Propag. Mag. 2001, 53, 76–85. [Google Scholar] [CrossRef] [Green Version]
- International Commission on Non-Ionizing Radiation Protection. Guidelines for Limiting Exposure to Electromagnetic Fields (100 kHz to 300 GHz). Health Phys. 2020, 118, 483–524. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Establishing a Dialogue on Risks from Electromagnetic Fields; WHO: Geneva, Switzerland, 2002. [Google Scholar]
- COST Action 231. Digital Mobile Radio towards Future Generation; European Commission: Brussels, Belgium, 1999. [Google Scholar]
- Bertoni, H.L. Radio Propagation for Modern Wireless Systems; Prentice & Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Anglesio, L.; Benedetto, A.; Bonino, A.; Colla, D.; Martire, F.; Saudino Fusette, S.; d’Amore, G. Population Exposure to Electromagnetic Fields Generated by Radio Base Stations: Evaluation of the Urban Background by Using Provisional Model and Instrumental Measurements. Radiat. Prot. Dosim. 2001, 97, 355–358. [Google Scholar] [CrossRef] [PubMed]
- Giliberti, C.; Boella, F.; Bedini, A.; Palomba, R.; Giuliani, L. Electromagnetic Mapping of Urban Areas: The Example of Monselice (Italy), Monselice (Italia). PIERS Online 2009, 5, 56–60. [Google Scholar] [CrossRef]
- Miclaus, S.; Bechet, P. Estimated and measured values of the radiofrequency radiation power density around cellular base stations. Rom. J. Phys. 2007, 52, 429. [Google Scholar]
- Djuric, N.; Kljajic, D.; Kasas-Lazetic, K.; Bajovic, V. The Measurement Procedure in the SEMONT Monitoring System. Environ. Monit. Assess. 2014, 186, 1865–1874. [Google Scholar] [CrossRef]
- Djuric, N. The SEMONT continuous monitoring of daily EMF exposure in an open area environment. Environ. Monit. Assess. 2015, 187, 191. [Google Scholar] [CrossRef]
- Koprivica, M. Statistical analysis of electromagnetic radiation measurements in the vicinity of GSM/UMTS base station installed on buildings in Serbia. Radiat. Prot. Dosim. 2016, 168, 489–502. [Google Scholar] [CrossRef] [Green Version]
- Kljajic, D.; Djuric, N. Comparative analysis of EMF monitoring campaigns in the campus area of the University of Novi Sad. Environ. Sci. Pollut. Res. 2020, 27, 1–16. [Google Scholar] [CrossRef]
- Çerezci, O.; Kanberoğlu, B.; Yener, Ş.Ç. Analysis on trending electromagnetic exposure levels at homes and proximity next to base stations along three years in a city. J. Environ. Eng. Landsc. Manag. 2015, 23, 71–81. [Google Scholar] [CrossRef]
- Pascuzzi, S.; Santoro, F. Exposure of Farm Workers to Electromagnetic Radiation from Cellular Network Radio Base Stations Situated on Rural Agricultural Land. Int. J. Occup. Saf. Ergon. 2015, 21, 351–358. [Google Scholar] [CrossRef]
- Ojuh, O.D.; Isabona, J. Radio Frequency EMF Exposure Due to GSM Mobile Phones Base Stations: Measurements and Analysis in Nigerian Environment. Niger. J. Technol. 2015, 34, 809–814. [Google Scholar] [CrossRef] [Green Version]
- Saravanamuttu, S.; Singh, V.; Khumukcham, R.; Dorairaj, S. A Case Study of Cellular Base Stations in an Indian Metro (Chennai). Environ. We Int. J. Sci. Technol. 2015, 10, 37–49. [Google Scholar]
- Zheng, Q.; Zhigang, W. Study on electromagnetic radiation tests of base stations and its influence scope. In Proceedings of the 2015 7th Asia-Pacific Conference on Environmental Electromagnetics (CEEM), Hangzhou, China, 4–7 November 2015. [Google Scholar]
- Franceschetti, G.; Guida, R.; Iodice, A.; Riccio, D.; Ruello, G. Verifica di un Software per la Previsione Della Radiocopertura. In Proceedings of the XVI RiNEm, Genova, Italy, 18–21 September 2006. [Google Scholar]
- Telecomunicazioni ALDENA Software. Programma software ALDENA per ambiente Windows® per la previsione dei campi elettromagnetici generati da antenne trasmittenti. 2007. Available online: http://www.aldena.it/ (accessed on 5 May 2020).
- Berg, J-E. A recursive method for street microcell path loss calculations. In Proceedings of the 6th International Symposium on Personal, Indoor and Mobile Radio Communications, Toronto, ON, Canada, 27–29 September 1995.
- Hata, M. Empirical formula for propagation loss in land mobile radio services. IEEE Trans. Veh. Technol. 1980, 29, 317–325. [Google Scholar] [CrossRef]
- Okumura, Y. Field strength and its variability in VHF and UHF land-mobile radio service. Rev. Electr. Commun. Lab. 1968, 16, 825–873. [Google Scholar]
- Walfisch, J.; Bertoni, H.L. A theoretical model of UHF propagation in urban environments. IEEE Trans. Antennas Propag. 1988, 36, 1788–1796. [Google Scholar] [CrossRef] [Green Version]
- Ikegami, F.; Yoshida, S.; Takeuchi, T.; Umehira, M. Propagation Factors Controlling Mean Field Strength on Urban Streets. IEEE Trans. Antennas Propag. 1984, 32, 822–829. [Google Scholar] [CrossRef]
- Fanti, A.; Schirru, L.; Casu, S.; Lodi, M.B.; Riccio, G.; Mazzarella, G. Improvement and Testing of Models for Field Level Evaluation in Urban Environment. IEEE Trans. Antennas Propag. 2020. [Google Scholar] [CrossRef]
- D’Agostino, F.; Iacone, M.; Riccio, G. A new recursive approach for the full pattern reconstruction. In Proceedings of the International Symposium on Antenna Technology and Applied Electromagnetics, ANTEM 2004, Ottawa, ON, Canada, 20–23 July 2004. [Google Scholar]
- ARPAS. Available online: http://www.sardegnaambiente.it/arpas/ (accessed on 1 April 2020).
- Mannaro, K.; Ortu, M. Onde Chiare: A Mobile Application to Mitigate the Risk Perception from Electromagnetic Fields. In Mobile Web and Intelligent Information Systems; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9847. [Google Scholar]
- Roboguice. Available online: https://github.com/roboguice/roboguice (accessed on 1 April 2020).
- García, B.; López-Fernández, L.; Gortázar, F.; Gallego, M. Practical Evaluation of VMAF Perceptual Video Quality for WebRTC Applications. Electronics 2019, 8, 854. [Google Scholar] [CrossRef] [Green Version]
- Roboeletric. Available online: http://robolectric.org/ (accessed on 1 April 2020).
- Koprivica, M.; Petric, M.; Popovic, M.; Milinkovic, J.; Neškovic, A. Empirical analysis of electric field strength long-term variability for GSM/DCS/UMTS downlink band. Telfor J. 2016, 8, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Mahfouz, Z.; Gati, A.; Lautru, D.; Wong, M.F.; Wiart, J.; Hanna, V.F. Influence of traffic variations on exposure to wireless signals in realistic environments. Bioelectromagnetics 2012, 33, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Garcia Sanchez, M.; Cuiñas, I.; Alejos, A.V. Electromagnetic field level temporal variation in urban areas. Electron. Lett. 2005, 41, 233–234. [Google Scholar] [CrossRef]
- Simkó, M.; Mattsson, M.O. 5G Wireless Communication and Health Effects—A Pragmatic Review Based on Available Studies Regarding 6 to 100 GHz. Int. J. Environ. Res. Public Health 2019, 16, 3406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, B. Power density measurements at 15 GHz for RF EMF compliance assessments of 5G user equipment. IEEE Trans. Antennas Propag. 2017, 65, 6584–6595. [Google Scholar] [CrossRef]
- Gkonis, P.K.; Trakadas, P.T.; Kaklamani, D.I. A Comprehensive Study on Simulation Techniques for 5G Networks: State of the Art Results, Analysis, and Future Challenges. Electronics 2020, 9, 468. [Google Scholar] [CrossRef] [Green Version]
- Franci, D.; Coltellacci, S.; Grillo, E.; Pavoncello, S.; Aureli, T.; Cintoli, R.; Migliore, M.D. An Experimental Investigation on the Impact of Duplexing and Beamforming Techniques in Field Measurements of 5G Signals. Electronics 2020, 9, 223. [Google Scholar] [CrossRef] [Green Version]
- Matalatala, M. Multi-objective Optimization of Massive MIMO 5G Wireless Networks towards Power Consumption, Uplink and Downlink exposure. Appl. Sci. 2019, 9, 4974. [Google Scholar] [CrossRef] [Green Version]
- Qamar, F.; Hindia, M.H.D.; Dimyati, K.; Noordin, K.A.; Majed, M.B.; Abd Rahman, T.; Amiri, I.S. Investigation of Future 5G-IoT Millimeter-Wave Network Performance at 38 GHz for Urban Microcell Outdoor Environment. Electronics 2019, 8, 495. [Google Scholar] [CrossRef] [Green Version]
- Ganame, H.; Yingzhuang, L.; Ghazzai, H.; Kamissoko, D. 5G Base Station Deployment Perspectives in Millimeter Wave Frequencies Using Meta-Heuristic Algorithms. Electronics 2019, 8, 1318. [Google Scholar] [CrossRef] [Green Version]
Name | Category | Coverage | Scenario | Country | Year | Ref. |
---|---|---|---|---|---|---|
COST231-Hata Mode | Empirical | 150 MHz–1.5 GHz d > 20 m | Urban | - | 1980 | [4,21] |
COST231-Walfisch–Ikegami | Empirical Statistical | 900 MHz–1.8 GHz d > 20 m | Urban | - | 1999 | [4,5,23,24] |
Prasad et al. | Deterministic Statistical Empirical | 1.8 GHz d > 20 m | Urban Suburban | India | 2011 | [1] |
Anglesio et al. | Deterministic | 100 kHz–3 GHz d > 20 m | Urban | Italy | 2001 | [6] |
Giliberti et al. | Deterministic (Ray tracing) | 3 MHz–3 GHz | Urban Suburban | Italy | 2009 | [7] |
Miclaus and Bechet | Deterministic | 900 MHz d > 20 m | Urban | Romania | 2007 | [8] |
SEMONT | Empirical | 700 MHz–2.6 GHz | Suburban | Serbia | 2014–2020 | [9,10,11,12] |
Çerezci et al. | Empirical | 900 MHz–2.1 GHz | Urban | Turkey | 2015 | [13] |
Pascuzzi and Santoro | Deterministic | 900 MHz–1.8 GHz d > 20 m | Urban Suburban | Italy | 2015 | [14] |
Ojuh et al. | Deterministic | 900 MHz | Rural | Nigeria | 2015 | [15] |
Saravanamuttu et al. | Statistical Empirical | 540 kHz–2.6 GHz d > 20 m | Urban | India | 2015 | [16] |
Zheng and Zhigang | Deterministic | 30 MHz–3 GHz | Urban | China | 2015 | [17] |
Point | Distance from the RBS (m) | Measured (dB V/m) | Estimated (dB V/m) | Error (dB V/m) |
---|---|---|---|---|
A | 48.5 | −32.1 | −28.1 | 4 |
B | 60 | −42 | −44.1 | −2.1 |
C | 71.4 | −29.6 | −33.1 | −3.5 |
D | 67.6 | −40.9 | −44.2 | −3.3 |
E | 166.8 | −24.4 | −21.1 | 3.3 |
F | 166 | −41.3 | −38.5 | 2.8 |
G | 188 | −40.9 | −37.2 | 3.7 |
H | 135 | −40.7 | −38.2 | 2.5 |
I | 131.5 | −26.9 | −30.1 | −3.9 |
L | 88.4 | −27 | −28.7 | −1.7 |
M | 145 | −40.5 | −43.8 | −3.3 |
N | 115 | −36.4 | −36.6 | −0.2 |
O | 219 | −27.2 | −24.3 | 2.9 |
P | 109 | −38.6 | −34.2 | 4.4 |
Q | 119 | −25.8 | −21.6 | 4.2 |
Point | Distance from the RBS (m) | Measured (dB V/m) | Estimated (dB V/m) | Error (dB V/m) |
---|---|---|---|---|
A | 79.8 | −47.2 | −44.8 | 2.4 |
B | 62 | −59.6 | −59.1 | 0.5 |
C | 101.5 | −48.1 | −44.6 | 3.5 |
D | 140 | −49.7 | −46.9 | 2.8 |
E | 183 | −55 | −53.9 | 1.1 |
F | 173 | −50.8 | −52.6 | −1.8 |
G | 203.5 | −50.5 | −48.6 | 1.9 |
H | 228 | −57.2 | −58.5 | −1.3 |
I | 273.5 | −56.1 | −59.4 | −3.3 |
L | 281.5 | −63.4 | −59.7 | 3.7 |
M | 300 | −52.1 | −53.6 | −1.5 |
N | 148.5 | −48.8 | −45.3 | 3.5 |
O | 150.6 | −55.9 | −60.2 | −4.3 |
P | 176 | −49.3 | −51.2 | −1.9 |
Q | 248.8 | −50.4 | −51.7 | −1.3 |
R | 282.5 | −54.4 | −51 | 3.4 |
S | 314.8 | −54.3 | −51.3 | 3 |
Point | Distance from the RBS (m) | Measured (dB V/m) | Estimated (dB V/m) | Error (dB V/m) |
---|---|---|---|---|
A | 438 | −53.3 | −49.4 | 3.9 |
B | 437.2 | −59.3 | −57.3 | 2 |
C | 412.7 | −53.5 | −54.3 | −0.8 |
D | 394.5 | −32.9 | −28.3 | 4.6 |
E | 483.4 | −47.3 | −44.7 | 2.6 |
F | 519.5 | −59.2 | −54.7 | 4.5 |
G | 478 | −40.6 | −45.4 | −4.8 |
H | 489 | −40.5 | −42.8 | −2.3 |
I | 526 | −46.6 | −48.1 | −1.5 |
L | 519.8 | −47.6 | −47.7 | −0.1 |
M | 499 | −52.4 | −48,.1 | 4.3 |
N | 516 | −55.7 | −55.7 | 0 |
O | 540 | −44.3 | −40.6 | 3.7 |
P | 547 | −43.3 | −45 | −1.7 |
Q | 587 | −44.3 | −47.3 | −3 |
R | 698.3 | −49.6 | −51.5 | −1.9 |
S | 741 | −58.7 | −55.2 | 3.5 |
T | 779 | −60.1 | −56.9 | 3.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schirru, L.; Ledda, F.; Lodi, M.B.; Fanti, A.; Mannaro, K.; Ortu, M.; Mazzarella, G. Electromagnetic Field Levels in Built-up Areas with an Irregular Grid of Buildings: Modeling and Integrated Software. Electronics 2020, 9, 765. https://doi.org/10.3390/electronics9050765
Schirru L, Ledda F, Lodi MB, Fanti A, Mannaro K, Ortu M, Mazzarella G. Electromagnetic Field Levels in Built-up Areas with an Irregular Grid of Buildings: Modeling and Integrated Software. Electronics. 2020; 9(5):765. https://doi.org/10.3390/electronics9050765
Chicago/Turabian StyleSchirru, Luca, Filippo Ledda, Matteo Bruno Lodi, Alessandro Fanti, Katiuscia Mannaro, Marco Ortu, and Giuseppe Mazzarella. 2020. "Electromagnetic Field Levels in Built-up Areas with an Irregular Grid of Buildings: Modeling and Integrated Software" Electronics 9, no. 5: 765. https://doi.org/10.3390/electronics9050765
APA StyleSchirru, L., Ledda, F., Lodi, M. B., Fanti, A., Mannaro, K., Ortu, M., & Mazzarella, G. (2020). Electromagnetic Field Levels in Built-up Areas with an Irregular Grid of Buildings: Modeling and Integrated Software. Electronics, 9(5), 765. https://doi.org/10.3390/electronics9050765