Low Complexity Angular-Domain Detection for the Uplink of Multi-User mmWave Massive MIMO Systems
Abstract
:1. Introduction
- The schemes in [35,36] have the complexity of order , where M is the number of antennas. However, the computational complexity of the proposed ACD scheme is of order , where K is the number of users; and it is not affected by the number of antennas, so it is more suitable for mmWave massive MIMO systems;
- The proposed ACD algorithm uses ZF, MRC and MMSE detection methods for baseband detection processing. The achievable rates and energy efficiency are analyzed, and the superiority of the proposed ACD algorithm is verified through simulations.
2. System Model
3. Low-Complexity Detection Based on Angular-Domain Compressing
3.1. Angular-Domain Compression
Algorithm 1 The Proposed ACD Scheme |
Input:, , , . |
Output:. |
|
3.2. Baseband Processing
4. Performance Analysis
4.1. Uplink Achievable Rates
4.2. Computational Complexity
- Calculation of conjugate-symmetric matrix . The multiplication of a and an complex matrix requires computing complex-valued multiplications, so the complexity is FLOPs;
- Calculation of . The multiplication of a and a complex matrix requires computing complex-valued multiplications and complex-valued additions, so the complexity is FLOPs;
- Calculating is to sum the real matrix by row, which requires FLOPs.
5. Numerical Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wong, V.W.S.; Schober, R.; Ng, D.W.K.; Wang, L.C. Key Technologies for 5G Wireless Systems; Mobile Edge Computing; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Zhang, J.; Bjrnson, E.; Matthaiou, M.; Ng, D.W.K.; Love, D.J. Multiple Antenna Technologies for Beyond 5G. arXiv 2019, arXiv:1910.00092. [Google Scholar]
- Wei, L.; Hu, R.Q.; Qian, Y.; Wu, G. Key elements to enable millimeter wave communications for 5G wireless systems. IEEE Wirel. Commun. 2014, 21, 136–143. [Google Scholar] [CrossRef]
- Zhang, W.; Ren, H.; Pan, C.; Chen, M.; de Lamare, R.C.; Du, B.; Dai, J. Large-Scale Antenna Systems with UL/DL Hardware Mismatch: Achievable Rates Analysis and Calibration. IEEE Trans. Commun. 2015, 63, 1216–1229. [Google Scholar] [CrossRef]
- Larsson, E.G.; Edfors, O.; Tufvesson, F.; Marzetta, T.L. Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 2014, 52, 186–195. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.A.; Huang, X.; Dyadyuk, V.; Guo, Y.J. Massive hybrid antenna array for millimeter-wave cellular communications. IEEE Wirel. Commun. 2015, 22, 79–87. [Google Scholar] [CrossRef]
- Alexandropoulos, G.C. Position aided beam alignment for millimeter wave backhaul systems with large phased arrays. In Proceedings of the 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Curacao, Dutch Antilles, 10–13December 2017; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Ciuonzo, D.; Rossi, P.S.; Dey, S. Massive MIMO Channel-Aware Decision Fusion. IEEE Trans. Signal Process. 2015, 63, 604–619. [Google Scholar] [CrossRef]
- Jiang, F.; Chen, J.; Swindlehurst, A.L.; López-Salcedo, J.A. Massive MIMO for Wireless Sensing with a Coherent Multiple Access Channel. IEEE Trans. Signal Process. 2015, 63, 3005–3017. [Google Scholar] [CrossRef]
- Shirazinia, A.; Dey, S.; Ciuonzo, D.; Salvo Rossi, P. Massive MIMO for Decentralized Estimation of a Correlated Source. IEEE Trans. Signal Process. 2016, 64, 2499–2512. [Google Scholar] [CrossRef] [Green Version]
- Pei, Y.; Pham, T.H.; Liang, Y. How many RF chains are optimal for large-scale MIMO systems when circuit power is considered? In Proceedings of the 2012 IEEE Global Communications Conference (GLOBECOM), Anaheim, CA, USA, 3–7 December 2012; pp. 3868–3873. [Google Scholar] [CrossRef]
- Rusek, F.; Persson, D.; Lau, B.K.; Larsson, E.G.; Marzetta, T.L.; Edfors, O.; Tufvesson, F. Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays. IEEE Signal Process. Mag. 2013, 30, 40–60. [Google Scholar] [CrossRef] [Green Version]
- Heath, R.W.; González-Prelcic, N.; Rangan, S.; Roh, W.; Sayeed, A.M. An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems. IEEE J. Sel. Top. Signal Process. 2016, 10, 436–453. [Google Scholar] [CrossRef]
- Roh, W.; Seol, J.; Park, J.; Lee, B.; Lee, J.; Kim, Y.; Cho, J.; Cheun, K.; Aryanfar, F. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: The oretical feasibility and prototype results. IEEE Commun. Mag. 2014, 52, 106–113. [Google Scholar] [CrossRef]
- Sanayei, S.; Nosratinia, A. Antenna selection in MIMO systems. IEEE Commun. Mag. 2004, 42, 68–73. [Google Scholar] [CrossRef]
- Sanayei, S.; Nosratinia, A. Capacity maximizing algorithms for joint transmit-receive antenna selection. In Proceedings of the Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 7–10 November 2004; Volume 2, pp. 1773–1776. [Google Scholar] [CrossRef]
- Venkateswaran, V.; van der Veen, A. Analog Beamforming in MIMO Communications with Phase Shift Networks and Online Channel Estimation. IEEE Trans. Signal Process. 2010, 58, 4131–4143. [Google Scholar] [CrossRef]
- Gholam, F.; Via, J.; Santamaria, I. Beamforming Design for Simplified Analog Antenna Combining Architectures. IEEE Trans. Veh. Technol. 2011, 60, 2373–2378. [Google Scholar] [CrossRef]
- Ayach, O.E.; Rajagopal, S.; Abu-Surra, S.; Pi, Z.; Heath, R.W. Spatially Sparse Precoding in Millimeter Wave MIMO Systems. IEEE Trans. Wirel. Commun. 2014, 13, 1499–1513. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Xiao, L.; Xu, X.; Zhou, S. Robust and Low Complexity Hybrid Beamforming for Uplink Multiuser MmWave MIMO Systems. IEEE Commun. Lett. 2016, 20, 1140–1143. [Google Scholar] [CrossRef]
- Li, A.; Masouros, C. Hybrid Analog-Digital Millimeter-Wave MU-MIMO Transmission with Virtual Path Selection. IEEE Commun. Lett. 2017, 21, 438–441. [Google Scholar] [CrossRef] [Green Version]
- Obara, T.; Suyama, S.; Shen, J.; Okumura, Y. Joint fixed beamforming and eigenmode precoding for super high bit rate massive MIMO systems using higher frequency bands. In Proceedings of the 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), Indoor, Washington, DC, USA, 2–5 September 2014; pp. 607–611. [Google Scholar] [CrossRef]
- Ayach, O.E.; Heath, R.W.; Abu-Surra, S.; Rajagopal, S.; Pi, Z. Low complexity precoding for large millimeter wave MIMO systems. In Proceedings of the 2012 IEEE International Conference on Communications (ICC), Ottawa, ON, Canada, 10–15 June 2012; pp. 3724–3729. [Google Scholar] [CrossRef]
- Sohrabi, F.; Yu, W. Hybrid Digital and Analog Beamforming Design for Large-Scale Antenna Arrays. IEEE J. Sel. Top. Signal Process. 2016, 10, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Gao, X.; Quan, J.; Han, S.; I, C.-L. Near-optimal hybrid analog and digital precoding for downlink mmWave massive MIMO systems. In Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 1334–1339. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Edfors, O.; Rusek, F.; Tufvesson, F. Linear Pre-Coding Performance in Measured Very-Large MIMO Channels. In Proceedings of the 2011 IEEE Vehicular Technology Conference (VTC Fall), San Francisco, CA, USA, 5–8 September 2011; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Brady, J.; Behdad, N.; Sayeed, A.M. Beamspace MIMO for Millimeter-Wave Communications: System Architecture, Modeling, Analysis, and Measurements. IEEE Trans. Antennas Propag. 2013, 61, 3814–3827. [Google Scholar] [CrossRef]
- Gao, X.; Dai, L.; Chen, Z.; Wang, Z.; Zhang, Z. Near-Optimal Beam Selection for Beamspace MmWave Massive MIMO Systems. IEEE Commun. Lett. 2016, 20, 1054–1057. [Google Scholar] [CrossRef]
- Amadori, P.V.; Masouros, C. Low RF-Complexity Millimeter-Wave Beamspace-MIMO Systems by Beam Selection. IEEE Trans. Commun. 2015, 63, 2212–2223. [Google Scholar] [CrossRef]
- Yu, X.; Shen, J.; Zhang, J.; Letaief, K.B. Alternating Minimization Algorithms for Hybrid Precoding in Millimeter Wave MIMO Systems. IEEE J. Sel. Top. Signal Process. 2016, 10, 485–500. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Han, S.; Pan, Z.; I, C.-L. Alternating beamforming methods for hybrid analog and digital MIMO transmission. In Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 1595–1600. [Google Scholar] [CrossRef]
- Liang, L.; Xu, W.; Dong, X. Low-Complexity Hybrid Precoding in Massive Multiuser MIMO Systems. IEEE Wirel. Commun. Lett. 2014, 3, 653–656. [Google Scholar] [CrossRef] [Green Version]
- Hao, W.; Zeng, M.; Chu, Z.; Yang, S. Energy-Efficient Power Allocation in Millimeter Wave Massive MIMO With Non-Orthogonal Multiple Access. IEEE Wirel. Commun. Lett. 2017, 6, 782–785. [Google Scholar] [CrossRef] [Green Version]
- Ni, W.; Dong, X. Hybrid Block Diagonalization for Massive Multiuser MIMO Systems. IEEE Trans. Commun. 2016, 64, 201–211. [Google Scholar] [CrossRef] [Green Version]
- Mahdavi, M.; Edfors, O.; Öwall, V.; Liu, L. A Low Complexity Massive MIMO Detection Scheme Using Angular-Domain Processing. In Proceedings of the 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Anaheim, CA, USA, 26–29 November 2018; pp. 181–185. [Google Scholar] [CrossRef]
- Mahdavi, M.; Edfors, O.; Öwall, V.; Liu, L. A VLSI Implementation of Angular-Domain Massive MIMO Detection. In Proceedings of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Zhang, W.; Xia, X.; Fu, Y.; Bao, X. Hybrid and full-digital beamforming in mmWave Massive MIMO systems: A comparison considering low-resolution ADCs. China Commun. 2019, 16, 91–102. [Google Scholar]
- Hu, X.; Zhong, C.; Chen, X.; Xu, W.; Zhang, Z. Cluster Grouping and Power Control For Angle-Domain MmWave MIMO NOMA Systems. IEEE J. Sel. Top. Signal Process. 2019, 13, 1167–1180. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Y.; Boudreau, G.; Sediq, A.B.; Wang, X. Angle-based beamforming in mmWave massive MIMO systems with low feedback overhead using multi-pattern codebooks. China Commun. 2019, 16, 18–30. [Google Scholar]
- Zhao, J.; Gao, F.; Jia, W.; Zhang, S.; Jin, S.; Lin, H. Angle Domain Hybrid Precoding and Channel Tracking for Millimeter Wave Massive MIMO Systems. IEEE Trans. Wirel. Commun. 2017, 16, 6868–6880. [Google Scholar] [CrossRef]
- Liu, T.; Ni, L.; Jin, S.; You, X. Angular Domain PAPR Reduction for Massive Multi-user MIMO-OFDM Downlink. In Proceedings of the 2018 IEEE/CIC International Conference on Communications in China (ICCC), Beijing, China, 16–18 August 2018; pp. 222–226. [Google Scholar]
- Bogale, T.E.; Le, L.B. Beamforming for multiuser massive MIMO systems: Digital versus hybrid analog-digital. In Proceedings of the 2014 IEEE Global Communications Conference, Austin, TX, USA, 8–12 December 2014; pp. 4066–4071. [Google Scholar] [CrossRef] [Green Version]
- Robaei, M.; Akl, R. Time-Variant Broadband mmWave Channel Estimation Based on Compressed Sensing. In Proceedings of the 2019 IEEE 10th Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON), New York, NY, USA, 10–12 October 2019; pp. 172–178. [Google Scholar]
- Al-Salihi, H.; Nakhai, M.R. Bayesian compressed sensing-based channel estimation for massive MIMO systems. In Proceedings of the 2016 European Conference on Networks and Communications (EuCNC), Athens, Greece, 27–30 June 2016; pp. 360–364. [Google Scholar]
- Zhang, Q.; Jin, S.; Wong, K.; Zhu, H.; Matthaiou, M. Power Scaling of Uplink Massive MIMO Systems With Arbitrary-Rank Channel Means. IEEE J. Sel. Top. Signal Process. 2014, 8, 966–981. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; de Lamare, R.C.; Pan, C.; Chen, M.; Dai, J.; Wu, B.; Bao, X. Widely Linear Precoding for Large-Scale MIMO with IQI: Algorithms and Performance Analysis. IEEE Trans. Wirel. Commun. 2017, 16, 3298–3312. [Google Scholar] [CrossRef]
- Gao, X.; Tufvesson, F.; Edfors, O.; Rusek, F. Measured propagation characteristics for very-large MIMO at 2.6 GHz. In Proceedings of the 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, CA, USA, 4–7 November 2012; pp. 295–299. [Google Scholar] [CrossRef] [Green Version]
- Kraemer, M.; Dragomirescu, D.; Plana, R. Design of a Very Low-power, Low-cost 60 GHz Receiver Front-End Implemented in 65 nm CMOS Technology. Int. J. Microw. Wirel. Technol. 2011, 3, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Long, L. Energy-Efficient 60 GHz Phased-Array Design for Multi-Gb/s Communication Systems. Ph.D. Thesis, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA, 2014. [Google Scholar]
- Mendez-Rial, R.; Rusu, C.; Gonzalez-Prelcic, N.; Alkhateeb, A.; Heath, R.W. Hybrid MIMO Architectures for Millimeter Wave Communications: Phase Shifters or Switches? IEEE Access 2016, 4, 247–267. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, X.; Zhang, W.; Fu, Y.; Bao, X.; Xia, J. Low Complexity Angular-Domain Detection for the Uplink of Multi-User mmWave Massive MIMO Systems. Electronics 2020, 9, 795. https://doi.org/10.3390/electronics9050795
Xia X, Zhang W, Fu Y, Bao X, Xia J. Low Complexity Angular-Domain Detection for the Uplink of Multi-User mmWave Massive MIMO Systems. Electronics. 2020; 9(5):795. https://doi.org/10.3390/electronics9050795
Chicago/Turabian StyleXia, Xiaoxuan, Wence Zhang, Yinkai Fu, Xu Bao, and Jing Xia. 2020. "Low Complexity Angular-Domain Detection for the Uplink of Multi-User mmWave Massive MIMO Systems" Electronics 9, no. 5: 795. https://doi.org/10.3390/electronics9050795
APA StyleXia, X., Zhang, W., Fu, Y., Bao, X., & Xia, J. (2020). Low Complexity Angular-Domain Detection for the Uplink of Multi-User mmWave Massive MIMO Systems. Electronics, 9(5), 795. https://doi.org/10.3390/electronics9050795