Applications of Electromagnetic Waves: Present and Future
1. Introduction
2. The Present Issue
3. Future
Acknowledgments
Conflicts of Interest
References
- Tse, D.; Viswanath, P. Fundamentals of Wireless Communication; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Zoughi, R. Microwave Non-Destructive Testing and Evaluation; Kluwer Academic Publishers: Norwell, MA, USA, 2000. [Google Scholar]
- Amineh, R.K.; Martin, L.E.S.; Donderici, B. Holographic Techniques for Corrosion Evaluation of Wellbore Pipes. US Patent No. 9488749, 8 November 2016. [Google Scholar]
- Nikolova, N.K. Microwave Imaging for Breast Cancer. IEEE Microw. Mag. 2011, 12, 78–94. [Google Scholar] [CrossRef]
- Sun, Q.; He, Y.; Liu, K.; Fan, S.; Parrott, E.P.G.; Pickwell-MacPherson, E. Recent Advances in Terahertz Technology for Biomedical Applications. Quant. Imaging Med. Surg. 2017, 7, 345–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yerushalmi, A. Localized, non-invasive deep microwave hyperthermia for the treatment of prostatic tumors: The first 5 years. In Application of Hyperthermia in the Treatment of Cancer; Recent Results in Cancer Research; Issels, R.D., Wilmanns, W., Eds.; Springer: Amsterdam, The Netherlands, 1988; p. 107. [Google Scholar]
- Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing, 5th ed.; The Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Maio, A.D.; Greco, M.S. Modern Radar Detection Theory; SciTech Publishing: Raleigh, NC, USA, 2016. [Google Scholar]
- Sheen, D.M.; McMakin, D.L.; Hall, T.E. Three-Dimensional Millimeter-Wave Imaging for Concealed Weapon Detection. IEEE Trans. Microw. Theory Tech. 2001, 49, 1581–1592. [Google Scholar] [CrossRef]
- Artan, N.S.; Amineh, R.K. Wireless Power Transfer to Medical Implants with Multi-Layer Planar Coils. Chapter 9; In Emerging Capabilities and Applications of Wireless Power Transfer; IGI Global: Hershey, PA, USA, 2018. [Google Scholar]
- Wu, H.; Amineh, R.K. A Low-Cost and Compact Three-Dimensional Microwave Holographic Imaging System. Electronics 2019, 8, 1036. [Google Scholar] [CrossRef] [Green Version]
- Khalesi, B.; Sohani, B.; Ghavami, N.; Ghavami, M.; Dudley, S.; Tiberi, G. A Phantom Investigation to Quantify Huygens Principle Based Microwave Imaging for Bone Lesion Detection. Electronics 2019, 8, 1505. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.W.; Kandwal, A.; Cheng, Q.; Shi, H.; Tobore, I.; Nie, Z. Non-Invasive Blood Glucose Monitoring Using a Curved Goubau Line. Electronics 2019, 8, 662. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Fu, Z.; Lu, X.; Qin, S.; Wang, H.; Wang, X. Imaging of the Internal Structure of Permafrost in the Tibetan Plateau Using Ground Penetrating Radar. Electronics 2020, 9, 56. [Google Scholar] [CrossRef] [Green Version]
- AbuHussain, M.; Hasar, U.C. Design of X-Bandpass Waveguide Chebyshev Filter Based on CSRR Metamaterial for Telecommunication Systems. Electronics 2020, 9, 101. [Google Scholar] [CrossRef] [Green Version]
- Weng, M.-H.; Hsu, C.-W.; Lan, S.-W.; Yang, R.-Y. An Ultra-Wideband Bandpass Filter with a Notch Band and Wide Upper Bandstop Performances. Electronics 2019, 8, 1316. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Deng, L.; Qu, M.; Li, S. Polarization-Independent Tunable Ultra-Wideband Meta-Absorber in Terahertz Regime. Electronics 2019, 8, 831. [Google Scholar] [CrossRef] [Green Version]
- Kandwal, A.; Nie, Z.; Li, J.; Liu, Y.; WY Liu, L.; Das, R. Bandwidth and Gain Enhancement of Endfire Radiating Open-Ended Waveguide Using Thin Surface Plasmon Structure. Electronics 2019, 8, 504. [Google Scholar] [CrossRef] [Green Version]
- Yan, F.; Huang, Y.M.; Huang, T.; Ding, S.; Wang, K.; Bozzi, M. Transversely Compact Single-Ended and Balanced Bandpass Filters with Source–Load-Coupled Spurlines. Electronics 2019, 8, 416. [Google Scholar] [CrossRef] [Green Version]
- Dugin, N.A.; Zaboronkova, T.M.; Krafft, C.; Belyaev, G.R. Carbon-Based Composite Microwave Antennas. Electronics 2020, 9, 590. [Google Scholar] [CrossRef] [Green Version]
- Harrison, L.; Ravan, M.; Tandel, D.; Zhang, K.; Patel, T.; K Amineh, R. Material Identification Using a Microwave Sensor Array and Machine Learning. Electronics 2020, 9, 288. [Google Scholar] [CrossRef] [Green Version]
- Zong, C.; Zhang, D. Analysis of Propagation Characteristics along an Array of Silver Nanorods Using Dielectric Constants from Experimental Data and the Drude-Lorentz Model. Electronics 2019, 8, 1280. [Google Scholar] [CrossRef] [Green Version]
- Kubiak, I.; Loughry, J. LED Arrays of Laser Printers as Valuable Sources of Electromagnetic Waves for Acquisition of Graphic Data. Electronics 2019, 8, 1078. [Google Scholar] [CrossRef] [Green Version]
- Kubiak, I. Impact of IT Devices Production Quality on the Level of Protection of Processed Information against the Electromagnetic Infiltration Process. Electronics 2019, 8, 1054. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Zheng, J.; Song, Y.; Zhang, W.; Wang, M. Analysis and Design of an Energy Verification System for SC200 Proton Therapy Facility. Electronics 2019, 8, 541. [Google Scholar] [CrossRef] [Green Version]
- Tian, W.; Cui, H.; Yu, W. Analysis and Experimental Test of Electrical Characteristics on Bonding Wire. Electronics 2019, 8, 365. [Google Scholar] [CrossRef] [Green Version]
- Eleftheriades, G.V.; Balmain, K.G. Negative-Refraction Metamaterials: Fundamental Principles and Applications; Wiley: Hoboken, NJ, USA; IEEE Press: Piscataway, NJ, USA, 2005. [Google Scholar]
- Amineh, R.K.; Nikolova, N.K.; Ravan, M. Real-Time Three-Dimensional Imaging of Dielectric Bodies Using Microwave/Millimeter Wave Holography; Wiley: Hoboken, NJ, USA; IEEE Press: Piscataway, NJ, USA, 2019. [Google Scholar]
- Hunt, V.D.; Puglia, A.; Puglia, M. RFID: A Guide to Radio Frequency Identification; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Micrima Limited. Available online: https://micrima.com/ (accessed on 31 May 2002).
- EMTensor GmbH. Available online: https://www.emtensor.com/ (accessed on 13 May 2002).
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amineh, R.K. Applications of Electromagnetic Waves: Present and Future. Electronics 2020, 9, 808. https://doi.org/10.3390/electronics9050808
Amineh RK. Applications of Electromagnetic Waves: Present and Future. Electronics. 2020; 9(5):808. https://doi.org/10.3390/electronics9050808
Chicago/Turabian StyleAmineh, Reza K. 2020. "Applications of Electromagnetic Waves: Present and Future" Electronics 9, no. 5: 808. https://doi.org/10.3390/electronics9050808
APA StyleAmineh, R. K. (2020). Applications of Electromagnetic Waves: Present and Future. Electronics, 9(5), 808. https://doi.org/10.3390/electronics9050808