Efficient Implementation of Homomorphic and Fuzzy Transforms in Random-Projection Encryption Frameworks for Cancellable Face Recognition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Intuitionistic Fuzzy Sets
2.2. Homomorphic Transform
2.3. Gaussian RP
3. Cancellable Face Recognition Frameworks
3.1. CFR Framework Based on Intuitionistic Fuzzy Logic and Random Projection
3.2. CFR Framework Based on Homomorphic Transform and Random Projection
4. Results and Discussion
4.1. Performance Evaluation for Encryption Mechanisms and Cancellable Schemes
4.2. Execution Time and Complexity Analysis
- (O(1)) to register its current face;
- (O(n × (M × N))) to retrieve the function (IF) and perform distortion number 1 using the intuitionistic fuzzy transformation;
- (O(n × (M × N))) to retrieve the function (RP) and perform the second distortion number 2 using random projection;
- (O(M × N)) to apply random noise on the final distorted template;
- (O(M × N)) to compute the correlation coefficient between the distorted template of the current user with the dataset stored in the database, which was distorted via the same sequence;
- (O(n × (M × N))) based on the value of correlation coefficient required to execute the authentication process producing an outcome accept or reject.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- El-Latif, A.A.; Hossain, M.S.; Wang, N. Score level multibiometrics fusion approach for healthcare. Clust. Comput. 2017, 22, 2425–2436. [Google Scholar] [CrossRef]
- Gad, R.; Talha, M.; El-Latif, A.A.; Zorkany, M.; El-Sayed, A.; El-Fishawy, N.; Muhammade, G.; Talha, M. Iris Recognition Using Multi-Algorithmic Approaches for Cognitive Internet of things (CIoT) Framework. Future Gener. Comput. Syst. 2018, 89, 178–191. [Google Scholar] [CrossRef]
- Soliman, R.F.; El Banby, G.M.; Algarni, A.D.; Elsheikh, M.; Soliman, N.F.; Amin, M.; El-Samie, F.E.A. Double random phase encoding for cancelable face and iris recognition. Appl. Opt. 2018, 57, 10305–10316. [Google Scholar] [CrossRef] [PubMed]
- Savvides, M.; Kumar, B.V.K.V.; Khosla, P. Cancelable biometric filters for face recognition. In Proceedings of the 17th International Conference on Pattern Recognition, Cambridge, UK, 26 August 2004; Volume 3, pp. 922–925. [Google Scholar]
- Kaur, H.; Khanna, P. Cancelable features using log-Gabor filters for biometric authentication. Multimed. Tools Appl. 2016, 76, 4673–4694. [Google Scholar] [CrossRef]
- Maiorana, E.; Campisi, P.; Neri, A. Bioconvolving: Cancelable templates for a multi-biometrics signature recognition system. In Proceedings of the 2011 IEEE International Systems Conference, Montreal, QC, Canada, 3–6 April 2011; pp. 495–500. [Google Scholar]
- Butt, M.; Damer, N. Helper Data Scheme for 2D Cancelable Face Recognition using Bloom Filters. In Proceedings of the International Conference on Systems, Signals and Image Processing (IWSSIP), Dubrovnik, Croatia, 12–15 May 2014; pp. 271–274. [Google Scholar]
- Teoh, A.B.J.; Kuan, Y.W.; Lee, S. Cancellable biometrics and annotations on BioHash. Pattern Recognit. 2008, 41, 2034–2044. [Google Scholar] [CrossRef]
- Kaur, H.; Khanna, P. Gaussian Random Projection Based Non-invertible Cancelable Biometric Templates. Procedia Comput. Sci. 2015, 54, 661–670. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Simoncelli, E.P.; Bovik, A.C. Multiscale structural similarity for image quality assessment. In Proceedings of the Thirty-Seventh Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, 9–12 November 2003; pp. 1398–1402. [Google Scholar] [CrossRef] [Green Version]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Ejegwa, P.A.; Akowe, S.O.; Otene, P.M.; Ikyule, J.M. An overview on intuitionistic fuzzy sets. Int. J. Sci. Technol. Res. 2014, 3, 142–145. [Google Scholar]
- Verma, H.; Gupta, A.; Kumar, D. A modified intuitionistic fuzzy c-means algorithm incorporating hesitation degree. Pattern Recognit. Lett. 2019, 122, 45–52. [Google Scholar] [CrossRef]
- Akram, M.; Dudek, W.A. Intuitionistic fuzzy hypergraphs with applications. Inf. Sci. 2013, 218, 182–193. [Google Scholar] [CrossRef]
- Kaushik, R.; Bajaj, R.K.; Kumar, T. On Intuitionistic Fuzzy Divergence Measure with Application to Edge Detection. Procedia Comput. Sci. 2015, 70, 2–8. [Google Scholar] [CrossRef] [Green Version]
- Vlachos, I.K.; Sergiadis, G.D. The Role of Entropy in Intuitionistic Fuzzy Contrast Enhancement. In Proceedings of the International Fuzzy Systems Association World Congress, Cancun, Mexico, 18–21 June 2007. [Google Scholar]
- Chaira, T. Medical Image Processing: Advanced Fuzzy Set Theoretic Techniques; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Matoušek, J. On variants of the Johnson-Lindenstrauss lemma. Random Struct. Algorithms 2008, 33, 142–156. [Google Scholar] [CrossRef]
- Wang, N.; Li, Q.; El-Latif, A.A.; Peng, J.; Niu, X. An enhanced thermal face recognition method based on multiscale complex fusion for Gabor coefficients. Multimed. Tools Appl. 2013, 72, 2339–2358. [Google Scholar] [CrossRef]
- Ashiba, H.I.; Mansour, H.M.; Ahmed, H.M.; Dessouky, M.I.; El-Kordy, M.F.; Zahran, O.; El-Samie, F.E.A. Enhancement of IR images using histogram processing and the Undecimated additive wavelet transform. Multimed. Tools Appl. 2018, 78, 11277–11290. [Google Scholar] [CrossRef]
- Pillai, J.K.; Patel, V.M.; Chellappa, R.; Ratha, N.K. Secure and Robust Iris Recognition Using Random Projections and Sparse Representations. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 1877–1893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, V.M.; Ratha, N.K.; Chellappa, R. Cancelable Biometrics: A review. IEEE Signal Process. Mag. 2015, 32, 54–65. [Google Scholar] [CrossRef]
- Handmandlu, M.; Jha, D.; Sharma, R. Color image enhancement using fuzzy intensification. Pattern Recognit. Lett. 2004, 24, 81–87. [Google Scholar]
- Benrhouma, O.; Hermassi, H.; El-Latif, A.A.; Belghith, S. Chaotic watermark for blind forgery detection in images. Multimed. Tools Appl. 2015, 75, 8695–8718. [Google Scholar] [CrossRef]
- ORL Database. Available online: https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html (accessed on 1 June 2020).
- FERET Database. Available online: https://www.nist.gov/itl/products-and-services/color-feret-database (accessed on 1 June 2020).
- LFW Database. Available online: http://vis-www.cs.umass.edu/lfw/ (accessed on 1 June 2020).
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Réfrégier, P.; Javidi, B. Optical image encryption based on input plane and Fourier plane random encoding. Opt. Lett. 1995, 20, 767. [Google Scholar] [CrossRef]
- Sinha, A.; Singh, K. Image encryption by using fractional Fourier transform and jigsaw transform in image bit planes. Opt. Eng. 2005, 44, 057001. [Google Scholar] [CrossRef]
- Kumar, P.; Joseph, J.; Singh, K. Optical image encryption using a jigsaw transform for silhouette removal in interference-based methods and decryption with a single spatial light modulator. Appl. Opt. 2011, 50, 1805–1811. [Google Scholar] [CrossRef] [PubMed]
- Ben Tarif, E.; Wibowo, S.; Wasimi, S.; Tareef, A. A hybrid encryption/hiding method for secure transmission of biometric data in multimodal authentication system. Multimed. Tools Appl. 2017, 77, 2485–2503. [Google Scholar] [CrossRef]
- Sree, S.R.S.; Radha, N. Cancellable multimodal biometric user authentication system with fuzzy vault. In Proceedings of the 2016 International Conference on Computer Communication and Informatics (ICCCI), Coilmbatore, India, 7–9 January 2016; pp. 1–6. [Google Scholar]
- Dang, T.K.; Truong, Q.C.; Le, T.T.B.; Truong, H. Cancellable fuzzy vault with periodic transformation for biometric template protection. IET Biom. 2016, 5, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Soliman, R.F.; Amin, M.; El-Samie, F.E.A. A Modified Cancelable Biometrics Scheme Using Random Projection. Ann. Data Sci. 2018, 6, 223–236. [Google Scholar] [CrossRef]
Method | AROC | SSIM | Mean of Authorised Correlation Score | Mean of Unauthorised Correlation Score |
---|---|---|---|---|
CFR1 | 0.9720 | 0.0086 | 0.7935 | −0.0014 |
CFR2 | 0.9774 | 0.0580 | 0.7980 | 0.00000035 |
Homomorphic transform followed by salting | 0.6600 | 0.9988 | 0.6705 | 0.5895 |
Homomorphic transform followed by random kernel convolution | 0.00004 | 1.000 | 0.0021 | 0.8213 |
Framework | AROC | SSIM | Mean of Authorised Correlation Distribution | Mean of Unauthorised Correlation Distribution |
---|---|---|---|---|
CFR1 | 0.9744 | 0.0108 | 0.7944 | 0.0024 |
CFR2 | 0.9294 | 0.0019 | 0.7930 | 6.4323 × 10−4 |
Homomorphic transform followed by salting | 0.0501 | 0.9710 | 0.3491 | 0.1226 |
Homomorphic transform followed by random kernel convolution | 0.1092 | 0.2298 | 0.2323 | 0.3862 |
Framework | AROC | SSIM | Mean of Authorised Correlation Distribution | Mean of Unauthorised Correlation Distribution |
---|---|---|---|---|
CFR1 | 0.9668 | 0.0058 | 0.7936 | 0.0032 |
CFR2 | 0.9694 | 0.0029 | 0.7934 | 2.7577 × 10−4 |
Homomorphic transform followed by salting | 0.0977 | 0.9727 | 0.3635 | 0.0925 |
Homomorphic transform followed by random kernel convolution | 0.5569 | 0.2582 | 0.5225 | 0.2920 |
Method (Dataset) | AROC |
---|---|
CFR1 (ORL) | 0.9720 |
CFR2 (ORL) | 0.9774 |
CFR1 (FERET) | 0.9744 |
CFR2 (FERET) | 0.9294 |
CFR1 (LFW) | 0.9668 |
CFR2 (LFW) | 0.9694 |
FERFT only [29,30] | 0.8837 |
Jigsaw only [31] | 0.8967 |
[32] | 0.9076 |
[33] | 0.8737 |
[34] | 0.7187 |
[35] | 0.8630 |
[29] | 0.8684 |
Method | Time (s) |
---|---|
CFR1 | 13.14 |
CFR2 | 12.19 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Algarni, A.D.; El Banby, G.M.; Soliman, N.F.; El-Samie, F.E.A.; Iliyasu, A.M. Efficient Implementation of Homomorphic and Fuzzy Transforms in Random-Projection Encryption Frameworks for Cancellable Face Recognition. Electronics 2020, 9, 1046. https://doi.org/10.3390/electronics9061046
Algarni AD, El Banby GM, Soliman NF, El-Samie FEA, Iliyasu AM. Efficient Implementation of Homomorphic and Fuzzy Transforms in Random-Projection Encryption Frameworks for Cancellable Face Recognition. Electronics. 2020; 9(6):1046. https://doi.org/10.3390/electronics9061046
Chicago/Turabian StyleAlgarni, Abeer D., Ghada M. El Banby, Naglaa F. Soliman, Fathi E. Abd El-Samie, and Abdullah M. Iliyasu. 2020. "Efficient Implementation of Homomorphic and Fuzzy Transforms in Random-Projection Encryption Frameworks for Cancellable Face Recognition" Electronics 9, no. 6: 1046. https://doi.org/10.3390/electronics9061046
APA StyleAlgarni, A. D., El Banby, G. M., Soliman, N. F., El-Samie, F. E. A., & Iliyasu, A. M. (2020). Efficient Implementation of Homomorphic and Fuzzy Transforms in Random-Projection Encryption Frameworks for Cancellable Face Recognition. Electronics, 9(6), 1046. https://doi.org/10.3390/electronics9061046