On-Chip Terahertz Detector Designed with Inset-Feed Rectangular Patch Antenna and Catadioptric Lens
Abstract
:1. Introduction
2. On-Chip THz Antenna
3. Terahertz Detector Circuit
4. Catadioptric Horn-Like Lens
5. Terahertz Chip Measurements
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, Z.-Y.; Qi, F.; Wang, Y.-L.; Liu, P.-X.; Li, W.-F. A 220- to 299-GHz CMOS Terahertz Detector. J. Infrared Millim. Terahertz Waves 2019, 40, 606–619. [Google Scholar] [CrossRef]
- Choe, W.; Jeong, J. A Broadband THz On-Chip Transition Using a Dipole Antenna with Integrated Balun. Electronics 2018, 7, 236. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Song, L.; Huang, J.; Zhang, H.; Fang, F. Detection of the three-dimensional trajectory of an object based on a curved bionic compound eye. Opt. Lett. 2019, 44, 4143–4146. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Lei, J.; Fu, H.; Zhang, C.; Chua, T.-S.; Li, X. Unsupervised Video Action Clustering via Motion-Scene Interaction Constraint. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 131–144. [Google Scholar] [CrossRef]
- Preu, S. Introduction to the Special Issue on Terahertz Cameras and Detector Arrays. J. Infrared Millim. Terahertz Waves 2015, 36, 877–878. [Google Scholar] [CrossRef] [Green Version]
- Shanawani, M.; Masotti, D.; Costanzo, A. THz Rectennas and Their Design Rules. Electronics 2017, 6, 99. [Google Scholar] [CrossRef] [Green Version]
- Bauer, M.; Raemer, A.; Chevtchenko, S.A.; Osipov, K.Y.; Cibiraite, D.; Pralgauskaite, S.; Ikamas, K.; Lisauskas, A.; Heinrich, W.; Krozer, V.; et al. A High-Sensitivity AlGaN/GaN HEMT Terahertz Detector With Integrated Broadband Bow-Tie Antenna. IEEE Trans. Terahertz Sci. Technol. 2019, 9, 430–444. [Google Scholar] [CrossRef]
- Zak, A.; Andersson, M.A.; Bauer, M.; Matukas, J.; Lisauskas, A.; Roskos, H.G.; Stake, J. Antenna-Integrated 0.6 THz FET Direct Detectors Based on CVD Graphene. Nano Lett. 2014, 14, 5834–5838. [Google Scholar] [CrossRef]
- Qin, H.; Li, X.; Sun, J.; Zhang, Z.; Sun, Y.; Yu, Y.; Li, X.; Luo, M. Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors. Appl. Phys. Lett. 2017, 110, 171109. [Google Scholar] [CrossRef] [Green Version]
- Hadi, R.A.; Sherry, H.; Grzyb, J.; Baktash, N.; Zhao, Y.; Öjefors, E.; Kaiser, A.; Cathelin, A.; Pfeiffer, U. A broadband 0.6 to 1 THz CMOS imaging detector with an integrated lens. In Proceedings of the 2011 IEEE MTT-S International Microwave Symposium, Baltimore, MD, USA, 5–10 June 2011. [Google Scholar]
- Zhao, F.; Zhu, C.; Guo, W.; Cong, J.; Tee, C.A.T.H.; Song, L.; Zheng, Y. Resonant Tunneling Diode (RTD) Terahertz Active Transmission Line Oscillator with Graphene-Plasma Wave and Two Graphene Antennas. Electronics 2019, 8, 1164. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Wang, Y.; Guo, W.; Cong, J.; Tee, C.A.T.; Song, L.; Zheng, Y. Analysis of the eight parameter variation of the resonant tunneling diode (RTD) in the rapid thermal annealing process with resistance compensation effect. AIP Adv. 2020, 10, 035103. [Google Scholar] [CrossRef] [Green Version]
- Ojefors, E.; Pfeiffer, U.R.; Lisauskas, A.; Roskos, H.G. A 0.65 THz Focal-Plane Array in a Quarter-Micron CMOS Process Technology. IEEE J. Solid State Circuits 2009, 44, 1968–1976. [Google Scholar] [CrossRef]
- Han, R.; Zhang, Y.; Coquillat, D.; Hoy, J.; Videlier, H.; Knap, W.; Brown, E.; Kenneth, K.O. A 280-GHz schottky diode detector in 130-nm digital CMOS. IEEE J. Solid State Circuits 2011, 46, 2602–2612. [Google Scholar] [CrossRef]
- Uzunkol, M.; Gurbuz, O.D.; Golcuk, F.; Rebeiz, G.M. A 0.32 THz SiGe 4x4 Imaging Array Using High-Efficiency On-Chip Antennas. IEEE J. Solid State Circuits 2013, 48, 2056–2066. [Google Scholar] [CrossRef]
- Yang, S.Y.; Cho, C.S.; Lee, J.W.; Kim, J. Design of Sub-THz Log-Periodic Antenna for High Input Impedance. In Proceedings of the 34th International Conference on Infrared, Millimeter, and Terahertz Waves, Busan, Korea, 21–25 September 2009; pp. 739–740. [Google Scholar]
- Wang, P.; Huang, Y.H.; Zuo, Z.G.; Yu, J.Z. Optimization of 0.34 THz log-periodic antenna for superconducting terahertz emitter. In Proceedings of the 2015 Asia-Pacific Microwave Conference (APMC), Nanjing, China, 6–9 December 2015; pp. 1–5. [Google Scholar]
- Seok, E.; Cao, C.; Shim, D.; Arenas, D.J. A 410GHz CMOS Push-Push Oscillator with an On-Chip Patch Antenna. In Proceedings of the 2008 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 3–7 February 2008; pp. 472–629. [Google Scholar]
- Boppel, S.; Lisauskas, A.; Bauer, M.; Hajo, A.S.; Zdanevičius, J.; Matukas, J.; Mittendorff, M.; Winnerl, S.; Krozer, V.; Roskos, H.G. Monolithically-integrated antenna-coupled field-effect transistors for detection above 2 THz. In Proceedings of the European Conference on Antennas and Propagation, Lisbon, Portugal, 13–17 April 2015; pp. 1–3. [Google Scholar]
- Xu, L.J.; Tong, F.C.; Xue, B.; Qin, L. Design of miniaturised on-chip slot antenna for THz detector in CMOS. IET Microw. Antennas Propag. 2018, 12, 1324–1331. [Google Scholar] [CrossRef]
- Li, C.H.; Chiu, T.Y. 340-GHz Low-Cost and High-Gain On-Chip Higher Order Mode Dielectric Resonator Antenna for THz Applications. IEEE Trans. Terahertz Sci. Technol. 2017, 7, 284–294. [Google Scholar] [CrossRef]
- Grzyb, J.; Zhao, Y.; Pfeiffer, U.R. A 288-GHz Lens-Integrated Balanced Triple-Push Source in a 65-nm CMOS Technology. IEEE J. Solid State Circuits 2013, 48, 1751–1761. [Google Scholar] [CrossRef]
- Cong, J.; Mao, L.; Xie, S.; Zhao, F.; Yan, D.; Guo, W. Photoelectric Dual Control Negative Differential Resistance Device Fabricated by Standard CMOS Process. IEEE Photonics J. 2019, 11, 1–11. [Google Scholar] [CrossRef]
- Niu, K.; Huang, Z.; Li, M.; Wu, X. Optimization of the Artificially Anisotropic Parameters in WCS-FDTD Method for Reducing Numerical Dispersion. IEEE Trans. Antennas Propag. 2017, 65, 7389–7394. [Google Scholar] [CrossRef]
- Harrington, R.F. Time-Harmonic Electromagnetic Fields. Siam J. Math. Anal. 1961, 12, 323. [Google Scholar]
- Schneider, M.V. Microstrip Lines for Microwave Integrated Circuits. Bell Labs Tech. J. 1969, 48, 1421–1444. [Google Scholar] [CrossRef]
- Jameson, S.; Halpern, E.; Socher, E. A 300 GHz wirelessly locked 2*3 array radiating 5.4 dBm with 5.1% DC-to-RF efficiency in 65 nm CMOS. In Proceedings of the 2016 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 31 January–4 February 2016; pp. 348–349. [Google Scholar]
- Golcuk, F.; Gurbuz, O.D.; Rebeiz, G.M. A 0.39–0.44 THz 2x4 Amplifier-Quadrupler Array With Peak EIRP of 3–4 dBm. IEEE Trans. Microw. Theory Tech. 2013, 61, 4483–4491. [Google Scholar] [CrossRef]
- Banik, B. Photonic THz Generation and Quasioptical Integration for Imaging Applications; Chalmers University of Technology: Goteborg, Sweden, 2009. [Google Scholar]
- Yu, A.Q.; Guo, X.G.; Zhu, Y.M.; Balakin, A.V.; Shkurinov, A.P. Metal-graphene hybridized plasmon induced transparency in the terahertz frequencies. Opt. Express 2019, 27, 11. [Google Scholar] [CrossRef] [PubMed]
- Schuster, F.; Coquillat, D.; Videlier, H.; Sakowicz, M.; Teppe, F.; Dussopt, L.; Giffard, B.; Skotnicki, T.; Knap, W. Broadband terahertz imaging with highly sensitive silicon CMOS detectors. Opt. Express 2011, 19, 7827–7832. [Google Scholar] [CrossRef]
- Knap, W.; Dyakonov, M.; Coquillat, D.; Teppe, F.; Dyakonova, N.; Lusakowski, J.; Karpierz, K.; Sakowicz, M.; Valusis, G.; Seliuta, D.; et al. Field Effect Transistors for Terahertz Detection: Physics and First Imaging Applications. J. Infrared Millim. Terahertz Waves 2009, 30, 1319–1337. [Google Scholar] [CrossRef] [Green Version]
- Lisauskas, A.; Roskos, H.G. Terahertz imaging with Si MOSFET focal-plane arrays. Proc. SPIE Int. Soc. Opt. Eng. 2009, 7215, 935–937. [Google Scholar] [CrossRef]
- Dyakonov, M.; Shur, M. Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current. Phys. Rev. Lett. 1993, 71, 2465. [Google Scholar] [CrossRef]
- Lisauskas, A.; Pfeiffer, U.; Oejefors, E.; Bolivar, P.H.; Glaab, D.; Roskos, H.G. Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors. J. Appl. Phys. 2009, 105, 114511. [Google Scholar] [CrossRef]
- Sherry, H.; Hadi, R.A.; Grzyb, J.; Öjefors, E.; Cathelin, A.; Kaiser, A.; Pfeiffer, U.R. Lens-integrated THz imaging arrays in 65 nm CMOS technologies. In Proceedings of the 2011 IEEE Radio Frequency Integrated Circuits Symposium, Baltimore, MD, USA, 5–7 June 2011; pp. 1–4. [Google Scholar]
- Zheng, Y.; Song, L.; Hu, G.; Zhao, M.; Tian, Y.; Zhang, Z.; Fang, F. Improving environmental noise suppression for micronewton force sensing based on electrostatic by injecting air damping. Rev. Sci. Instrum. 2014, 85, 055002. [Google Scholar] [CrossRef]
Parameter | Patch |
---|---|
Wg (µm) | 500 |
Lg (µm) | 500 |
W (µm) | 275 |
L (µm) | 275 |
Win (µm) | 90 |
Lin (µm) | 65 |
W1 (µm) | 5.5 |
L1 (µm) | 122 |
Gain (dB) | 6.89 |
Bandwidth (GHz) | 1.5 |
Central frequency (GHz) | 271 |
Radiation efficiency | 89.4% |
Ref. | Process | Antenna | Center Frequency (GHz) | Gain (dB) | Bandwidth (GHz) |
---|---|---|---|---|---|
[27] | TSMC 65 nm CMOS | Ring | 296 | 4.2 | - |
[28] | 45 nm CMOS SOI | Slot ring | 375 | 1.6 | 3 |
[21] | 0.18 µm CMOS | Rectangle + DRA | 327 | 7.9 | 2.5 |
[20] | TSMC 0.18 μm CMOS | Rectangle | 300 | –2.1 | 4.1 |
Circular | 300 | 5.30 | 11.3 | ||
Diamond | 300 | 5.94 | 9.6 | ||
[14] | 0.18 μm CMOS | Rectangle | 284 | –1 | 7 |
[22] | 65 nm CMOS | Ring with silicon lens | 288 | 18.3 | - |
This work | UMC 0.18 µm CMOS | Rectangle | 271 | 6.89 | 1.5 |
Frequency (GHz) | PBWO (mW) | LTHz (mW/mm2) | ∆U without Lens (µV) | ∆U with Lens (µV) |
---|---|---|---|---|
200 | 12 | 213 | 46.6 | 540.8 |
210 | 14 | 240 | 57.1 | 707.4 |
220 | 6 | 133 | 92.3 | 402 |
230 | 2 | 26 | 96.7 | 93.1 |
240 | 4 | 67 | 8.6 | 246.85 |
250 | 10 | 160 | 141.3 | 1148.04 |
260 | 16 | 267 | 144.3 | 1338 |
270 | 10 | 187 | 105.4 | 749 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, F.; Mao, L.; Guo, W.; Xie, S.; T. H. Tee, C.A. On-Chip Terahertz Detector Designed with Inset-Feed Rectangular Patch Antenna and Catadioptric Lens. Electronics 2020, 9, 1049. https://doi.org/10.3390/electronics9061049
Zhao F, Mao L, Guo W, Xie S, T. H. Tee CA. On-Chip Terahertz Detector Designed with Inset-Feed Rectangular Patch Antenna and Catadioptric Lens. Electronics. 2020; 9(6):1049. https://doi.org/10.3390/electronics9061049
Chicago/Turabian StyleZhao, Fan, Luhong Mao, Weilian Guo, Sheng Xie, and Clarence Augustine T. H. Tee. 2020. "On-Chip Terahertz Detector Designed with Inset-Feed Rectangular Patch Antenna and Catadioptric Lens" Electronics 9, no. 6: 1049. https://doi.org/10.3390/electronics9061049
APA StyleZhao, F., Mao, L., Guo, W., Xie, S., & T. H. Tee, C. A. (2020). On-Chip Terahertz Detector Designed with Inset-Feed Rectangular Patch Antenna and Catadioptric Lens. Electronics, 9(6), 1049. https://doi.org/10.3390/electronics9061049