Outage Performance of Power Beacon-Aided Multi-Hop Cooperative Cognitive Radio Protocol Under Constraint of Interference and Hardware Noises
Abstract
:1. Introduction
- Cooperation-based multi-hop DF relaying protocol is applied for the underlay CR networks to mitigate the joint impact of the interference constraint and HIs.
- From the energy harvested from multiple PBs and from the maximal interference threshold given by multiple primary users, we formulate transmit power of the secondary transmitters including the secondary source and relay nodes.
- We derive an exact recursive expression of the e2e OP for the proposed protocol over Rayleigh fading channels. We also realize Monte-Carlo based computer simulations to verify the theory. Relying on the derived expressions, optimization problems such as optimal number of hops and optimal fraction of total communication time used for the EH phases, are also performed.
- The results presented that the COOP protocol outperforms the DIRECT one. In addition, the system parameters such as number of PBs, number of primary users, number of hops, fraction of time allocated for the EH phases, and total HI level significantly effect on the e2e OP.
2. System Model
3. Performance Analysis
3.1. Mathematical Preliminaries
3.2. Point-to-Point Data Transmission
3.3. Point-to-Multi-Point Data Transmission
3.4. E2e OP of DIRECT
3.5. E2e OP of COOP
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bansal, R. The Future of Wireless Charging [AP-S Turnstile]. IEEE Antennas Propag. Mag. 2009, 51, 153-153. [Google Scholar] [CrossRef]
- Sudevalayam, S.; Kulkarni, P. Energy Harvesting Sensor Nodes: Survey and Implications. IEEE Commun. Surv. Tutor. 2011, 13, 443–461. [Google Scholar] [CrossRef] [Green Version]
- Mishra, D.; De, S.; Jana, S.; Basagni, S.; Chowdhury, K.; Heinzelman, W. Smart RF Energy Harvesting Communications: Challenges and Opportunities. IEEE Commun. Mag. 2015, 53, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Soyata, T.; Copeland, L.; Heinzelman, W. RF Energy Harvesting for Embedded Systems: A Survey of Tradeoffs and Methodology. IEEE Circuits Syst. Mag. 2016, 16, 22–57. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, Y.; Ning, Z.; Gharavi, H. Wireless Power Transfer and Energy Harvesting: Current Status and Future Prospects. IEEE Wirel. Commun. 2019, 26, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Nasir, A.A.; Zhou, X.; Durrani, S.; Kennedy, R.A. Relaying Protocols for Wireless Energy Harvesting and Information Processing. IEEE Trans. Wirel. Commun. 2013, 12, 3622–3636. [Google Scholar] [CrossRef] [Green Version]
- Di, X.; Xiong, K.; Fan, P.; Yang, H.C. Simultaneous Wireless Information and Power Transfer in Cooperative Relay Networks with Rateless Codes. IEEE Trans. Veh. Technol. 2017, 66, 2981–2996. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Minh, T.H.Q.; Tran, P.T.; Voznak, M.; Duy, T.T.; Nguyen, T.L.; Tin, P.T. Performance Enhancement for Energy Harvesting Based Two-Way Relay Protocols in Wireless Ad-hoc Networks with Partial and Full Relay Selection Methods. Ad-Hoc Netw. 2019, 84, 178–187. [Google Scholar] [CrossRef]
- Tran, H.Q.; Nguyen, T.T.; Phan, C.V.; Vien, Q.T. Power-Splitting Relaying Protocol for Wireless Energy Harvesting and Information Processing in NOMA Systems. IET Commun. 2019, 13, 2132–2140. [Google Scholar] [CrossRef] [Green Version]
- In, C.; Kim, H.M.; Choi, W. Achievable Rate-Energy Region in Two-Way Decode-and-Forward Energy Harvesting Relay Systems. IEEE Trans. Commun. 2019, 67, 3923–3935. [Google Scholar] [CrossRef]
- Ju, M.; Kang, K.M.; Hwang, K.S.; Jeong, C. Maximum Transmission Rate of PSR/TSR Protocols in Wireless Energy Harvesting DF-based Relay Networks. IEEE J. Sel. Areas Commun. 2015, 33, 2701–2717. [Google Scholar] [CrossRef]
- Chen, Y. Energy-Harvesting AF Relaying in the Presence of Interference and Nakagami-m Fading. IEEE Trans. Wirel. Commun. 2016, 15, 1008–1017. [Google Scholar] [CrossRef] [Green Version]
- Hadzi-Velkov, Z.; Nikoloska, I.; Karagiannidis, G.K.; Duong, T.Q. Wireless Networks with Energy Harvesting and Power Transfer: Joint Power and Time Allocation. IEEE Signal Process. Lett. 2016, 23, 50–54. [Google Scholar] [CrossRef] [Green Version]
- Son, P.N.; Duy, T.T. Performance Analysis of Underlay Cooperative Cognitive Full-duplex Networks with Energy-Harvesting Relay. Comput. Commun. 2018, 122, 9–19. [Google Scholar]
- Ding, J.; Jiang, L.; He, C.; Shen, Y. Time Splitting Concurrent Transmission Framework and Resource Allocation in Wireless Powered Communication Networks. IEEE Trans. Green Commun. Netw. 2018, 2, 666–678. [Google Scholar] [CrossRef]
- Atapattu, S.; Evans, J. Optimal Energy Harvesting Protocols for Wireless Relay Networks. IEEE Trans. Wirel. Commun. 2016, 15, 5789–5803. [Google Scholar] [CrossRef]
- Xu, K.; Shen, Z.; Wang, Y.; Xia, X.; Zhang, D. Hybrid Time-Switching and Power Splitting SWIPT for Full-Duplex Massive MIMO Systems: A Beam-Domain Approach. IEEE Trans. Veh. Technol. 2018, 67, 7257–7274. [Google Scholar] [CrossRef]
- Jiang, R.; Xiong, K.; Fan, P.; Zhang, Y.; Zhong, Z. Power Minimization in SWIPT Networks With Coexisting Power-Splitting and Time-Switching Users Under Nonlinear EH Model. IEEE Internet Things J. 2019, 6, 8853–8869. [Google Scholar] [CrossRef]
- Zheng, G.; Krikidis, I.; Masouros, C.; Timotheou, S.; Toumpakaris, D.A.; Ding, Z. Rethinking the Role of Interference in Wireless Networks. IEEE Commun. Mag. 2014, 52, 152–158. [Google Scholar] [CrossRef]
- Zhao, N.; Zhang, S.; Yu, F.R.; Chen, Y.; Nallanathan, A.; Leung, V.C. Exploiting Interference for Energy Harvesting: A Survey, Research Issues, and Challenges. IEEE Access 2017, 5, 10403–10421. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, H.; Lin, Z.; Li, Y.; Vucetic, B. Distributed and Optimal Resource Allocation for Power Beacon-Assisted Wireless-Powered Communications. IEEE Trans. Commun. 2015, 63, 3569–3583. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Guo, J.; Durrani, S.; Di Renzo, M. Power Beacon-Assisted Millimeter Wave Ad Hoc Networks. IEEE Trans. Commun. 2018, 66, 830–844. [Google Scholar] [CrossRef]
- Le, N.P. Throughput Analysis of Power-Beacon-Assisted Energy Harvesting Wireless Systems over Non-Identical Nakagami-m Fading Channels. IEEE Commun. Lett. 2018, 22, 840–843. [Google Scholar] [CrossRef]
- Liang, K.; Zhao, L.; Zheng, G.; Chen, H.H. Non-Uniform Deployment of Power Beacons in Wireless Powered Communication Networks. IEEE Trans. Wirel. Commun. 2019, 18, 1887–1899. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Zhao, G. On the Deployment of Distributed Antennas of Power Beacon in Wireless Power Transfer. IEEE Access 2018, 6, 7489–7502. [Google Scholar] [CrossRef]
- Mao, M.; Cao, N.; Chen, Y.; Zhou, Y. Multi-Hop Relaying Using Energy Harvesting. IEEE Wirel. Commun. Lett. 2015, 4, 565–568. [Google Scholar] [CrossRef] [Green Version]
- Chen, E.; Xia, M.; da Costa, D.B.; Aissa, S. Multi-Hop Cooperative Relaying with Energy Harvesting from Co-channel Interferences. IEEE Commun. Lett. 2017, 21, 1199–1202. [Google Scholar] [CrossRef]
- Lakshmi, S.P.; Jibukumar, M.G. SWIPT in Multi-Hop Amplify-and-Forward Wireless Sensor Networks. Int. J. Electron. 2019, 107, 630–643. [Google Scholar]
- Fan, R.; Atapattu, S.; Chen, W.; Zhang, Y.; Evans, J. Throughput Maximization for Multi-Hop Decode-and-Forward Relay Network with Wireless Energy Harvesting. IEEE Access 2018, 6, 24582–24595. [Google Scholar] [CrossRef]
- So-In, C.; Tran, D.D.; Tran, H. Optimal System Performance in Multihop Energy Harvesting WSNs Using Cooperative NOMA and Friendly Jammers. IEEE Access 2019, 7, 125494–125510. [Google Scholar]
- Mitola, J.; Maguire, G.Q. Cognitive Radio: Making Software Radios More Personal. IEEE Pers. Commun. 1999, 6, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Peha, J.M. Approaches to Spectrum Sharing. IEEE Commun. Mag. 2005, 43, 10–12. [Google Scholar] [CrossRef]
- Zeng, Z.; Liu, M.; Wang, J.; Lan, D. Non-Cooperative Spectrum Access Strategy Based on Impatient Behavior of Secondary Users in Cognitive Radio Networks. Electronics 2019, 8, 995. [Google Scholar] [CrossRef] [Green Version]
- Alvi, S.A.; Hussain, R.; Hasan, Q.U.; Malik, S.A. Improved Buffer-Aided Multi-Hop Relaying with Reduced Outage and Packet Delay in Cognitive Radio Networks. Electronics 2019, 8, 895. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.P.; Hong, B.; Ban, T.W.; Choi, W. On the Cooperative Diversity Gain in Underlay Cognitive Radio Systems. IEEE Trans. Commun. 2012, 60, 209–219. [Google Scholar] [CrossRef]
- He, P.; He, G.M.; Zhao, L. Optimal Power Allocation for MIMO-MAC in Cognitive Radio Networks. Electronics 2014, 3, 538–552. [Google Scholar] [CrossRef] [Green Version]
- Zheng, K.; Liu, X.Y.; Liu, X.; Zhu, Y. Hybrid Overlay-Underlay Cognitive Radio Networks with Energy Harvesting. IEEE Trans. Commun. 2019, 67, 4669–4682. [Google Scholar] [CrossRef]
- Xu, C.; Zheng, M.; Liang, W.; Yu, H.; Liang, Y.C. Outage Performance of Underlay Multihop Cognitive Relay Networks with Energy Harvesting. IEEE Commun. Lett. 2016, 20, 1148–1151. [Google Scholar] [CrossRef]
- Xu, C.; Zheng, M.; Liang, W.; Yu, H.; Liang, Y.C. End-to-End Throughput Maximization for Underlay Multi-hop Cognitive Radio Networks with RF Energy Harvesting. IEEE Trans. Wirel. Commun. 2017, 16, 3561–3572. [Google Scholar] [CrossRef]
- Boddapati, H.K.; Bhatnagar, M.R.; Prakriya, S. Performance Analysis of Cluster-Based Multi-hop Underlay CRNs Using Max-Link-Selection Protocol. IEEE Trans. Cogn. Commun. Netw. 2018, 4, 15–29. [Google Scholar] [CrossRef]
- Boddapati, H.K.; Bhatnagar, M.R.; Prakriya, S. Performance of Incremental Relaying Protocols for Cooperative Multihop CRNs. IEEE Trans. Veh. Technol. 2018, 67, 6006–6022. [Google Scholar] [CrossRef]
- Hieu, T.D.; Duy, T.T.; Choi, S.G. Performance Evaluation Of Relay Selection Schemes in Beacon-Assisted Dual-Hop Cognitive Radio Wireless Sensor Networks Under Impact of Hardware Noises. Sensors 2018, 18, 1843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karaca, H.M. Throughput Optimization of Multichannel Allocation Mechanism Under Interference Constraint for Hybrid Overlay/Underlay Cognitive Radio Networks with Energy Harvesting. Electronics 2020, 9, 330. [Google Scholar] [CrossRef] [Green Version]
- Laneman, J.N.; Tse, D.N.; Wornell, G.W. Cooperative Diversity in Wireless Networks: Efficient Protocols and Outage Behavior. IEEE Trans. Inf. Theory 2004, 50, 3062–3080. [Google Scholar] [CrossRef]
- Quang, P.M.; Duy, T.T.; Bao, V.N.Q. Performance Evaluation of Radio Frequency Energy Harvesting-Aided Multi-hop Cooperative Transmission Networks. In Proceedings of the 2019 25th Asia-Pacific Conference on Communications (APCC), Ho Chi Minh City, Vietnam, 6–8 November 2019; pp. 521–526. [Google Scholar]
- Papoulis, A.; Pillai, S.U. Probability, Random Variables, and Stochastic Processes; Tata McGraw-Hill Education: New York, NY, USA, 2002. [Google Scholar]
- Bjornson, E.; Hoydis, J.; Kountouris, M.; Debbah, M. Massive MIMO Systems With Non-Ideal Hardware: Energy Efficiency, Estimation, and Capacity Limits. IEEE Trans. Inf. Theory 2014, 60, 7112–7139. [Google Scholar] [CrossRef] [Green Version]
- Amari, S.V.; Misra, R.B. Closed-form Expressions for Distribution of Sum of Exponential Random Variables. IEEE Trans. Reliab. 1997, 46, 519–522. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products; Academic Press: London, UK, 2014. [Google Scholar]
- Chong, E.K.; Zak, S.H. An Introduction to Optimization; John Wiley & Sons: New York, NY, USA, 2004. [Google Scholar]
Δ(dB) | 0 | 2.5 | 5 | 7.5 | 10 | 12.5 | 15 | 17.5 | 20 | 22.5 | 25 |
(DIRECT) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 |
(COOP) | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minh Nam, P.; Trung Duy, T.; Van Ca, P.; Ngoc Son, P.; Hoang An, N. Outage Performance of Power Beacon-Aided Multi-Hop Cooperative Cognitive Radio Protocol Under Constraint of Interference and Hardware Noises. Electronics 2020, 9, 1054. https://doi.org/10.3390/electronics9061054
Minh Nam P, Trung Duy T, Van Ca P, Ngoc Son P, Hoang An N. Outage Performance of Power Beacon-Aided Multi-Hop Cooperative Cognitive Radio Protocol Under Constraint of Interference and Hardware Noises. Electronics. 2020; 9(6):1054. https://doi.org/10.3390/electronics9061054
Chicago/Turabian StyleMinh Nam, Pham, Tran Trung Duy, Phan Van Ca, Pham Ngoc Son, and Ngo Hoang An. 2020. "Outage Performance of Power Beacon-Aided Multi-Hop Cooperative Cognitive Radio Protocol Under Constraint of Interference and Hardware Noises" Electronics 9, no. 6: 1054. https://doi.org/10.3390/electronics9061054
APA StyleMinh Nam, P., Trung Duy, T., Van Ca, P., Ngoc Son, P., & Hoang An, N. (2020). Outage Performance of Power Beacon-Aided Multi-Hop Cooperative Cognitive Radio Protocol Under Constraint of Interference and Hardware Noises. Electronics, 9(6), 1054. https://doi.org/10.3390/electronics9061054