A Quantitative Method for the DNS Isolation Management Risk Estimation
Abstract
:1. Introduction
2. Related Work
3. Problem Statement
3.1. DNS Design Flaw
3.2. Isolation Management Risk
- Blocking network capability means the attacker can perform DDoS attacks on the network infrastructure of the country, such as export routing service;
- Hijacking service capability means the attacker can use cryptographic attacks or political power to hijack DNS services and send large amounts of forged data to the attack target.
- Overseas network unavailable, i.e., due to the unavailability of the outbound route, network equipment in the country cannot reach the network outside the country and cannot access overseas domain name servers;
- Overseas DNS packets are not trusted, i.e., if the DNS service is hijacked, the attacker generates DNS packets from untrustworthy overseas domain name servers, resulting in a large number of DNS resolutions that are untrustworthy or even unavailable.
3.3. Damage of IMR
4. Method for the Assessment of Isolated Management Risk
4.1. Proportion of Overseas Server Dependency
4.2. UDDL Collection Method
4.2.1. The General Ideas of the UDDL Collection
4.2.2. URqG Estimation Method
4.3. Resolution Demand Analysis
4.3.1. Tracking the Domain Name Resolution Process for Identifying OSD
Algorithm 1 OSD Identification (domainName, area) |
Input: A domain name and the area to be measured |
Output: Whether this input domain name belongs to the OSD domain name |
1: subDomain = splitDomain(domainName) |
2: isOverseasDomain = false |
3: for each item ∈ subDomains do |
4: IPs = digDomain(item) |
5: isDomesticSubDomain = isExistDomesticServer(IPs, area) |
6: if isDomesticSubDomain == false then |
7: isOverseasDomain = true |
8: break |
9: end if |
10: end for |
11: return isOverseasDomain |
12: |
13: function isExistDomesticServer(IPs, area) |
14: isExist = false |
15: for each item ∈ IPs do |
16: location = getIPGeolocation(item) |
17: locationIsBelongsToArea = isBelongsTo(location, area) |
18: if locationIsBelongsToArea == true then |
19: isExist = true |
20: break; |
21: end if |
22: end for |
23: return isExist |
24: end function |
4.3.2. Batch Statistical Process
5. Evaluation
6. Experiment
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Domain Name System. Available online: https://en.wikipedia.org/wiki/Domain_Name_System (accessed on 2 February 2020).
- Fang, B.X. Country autonomous root domain name resolution architecture from the perfective of country cyber sovereignty. Inf. Secur. Commun. Priv. 2014, 12, 35–38. [Google Scholar]
- Liu, Y.; Yue, M.; Tang, J.; Miao, L. Security analysis of internet domain names system. Netinfo Secur. 2010, 12, 14–16. [Google Scholar]
- Fang, B.X. A hierarchy model on the research fields of cyberspace security technology. Chin. J. Netw. Inf. Secur. 2016, 1, 2–7. [Google Scholar]
- Li, J.H.; Qiu, W.D.; Meng, K.; Wu, J. Discipline construction and talents training of cyberspace security. J. Inf. Secur. Res. 2015, 1, 149–154. [Google Scholar]
- Zhang, Y.; Xia, Z.; Fang, B.; Zhang, H. An autonomous open root resolution architecture for domain name system in the internet. J. Cyber Secur. Oct. 2014, 2. [Google Scholar] [CrossRef]
- Namecoin. Available online: http://namecoin.info (accessed on 2 February 2020).
- Nakamoto, S.; Bitcoin, A. A Peer-to-Peer Electronic Cash System. Bitcoin. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 2 February 2020).
- Li, M.; Sun, Y.; Su, S.; Tian, Z.; Wang, Y.; Wang, X. DPIF: A framework for distinguishing unintentional quality problems from potential shilling attacks. Comput. Mater. Contin. 2019, 59, 331–344. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Kong, W.; Li, W.; Xiong, N.N. A dual-chaining watermark scheme for data integrity protection in internet of things. Comput. Mater. Contin. 2019, 58, 679–695. [Google Scholar] [CrossRef] [Green Version]
- Tan, T.; Wang, B.; Tang, Y.; Zhou, X.; Han, J. A method for vulnerability database quantitative evaluation. Comput. Mater. Contin. 2019, 61, 1129–1144. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Xu, R.; Tang, X.; Sheng, V.S.; Cai, C. An abnormal network flow feature sequence prediction approach for ddos attacks detection in big data environment. Comput. Mater. Contin. 2018, 55, 95–119. [Google Scholar]
- Wang, B.; Gu, X.; Yan, S. STCS: A practical solar radiation based temperature correction scheme in meteorological WSN. Int. J. Sens. Netw. 2018, 28, 22–33. [Google Scholar] [CrossRef]
- Li, M.; Sun, Y.; Lu, H.; Maharjan, S.; Tian, Z. Deep reinforcement learning for partially observable data poisoning attack in crowdsensing systems. IEEE Internet Things J. 2020. [Google Scholar] [CrossRef]
- Tian, Z.; Luo, C.; Qiu, J.; Du, X.; Guizani, M. A distributed deep learning system for web attack detection on edge devices. IEEE Trans. Ind. Inform. 2019. [Google Scholar] [CrossRef]
- Wang, B.; Gu, X.; Zhou, A. E2S2: A code dissemination approach to energy efficiency and status surveillance for wireless sensor networks. J. Internet Technol. 2017, 8, 877–885. [Google Scholar] [CrossRef]
- Tian, Z.; Gao, X.; Su, S.; Qiu, J. Vcash: A novel reputation framework for identifying denial of traffic service in internet of connected vehicles. IEEE Internet Things J. 2020. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.; Shi, W.; Wang, Y.; Zhu, C.; Du, X.; Su, S.; Sun, Y.; Guizani, N. Real time lateral movement detection based on evidence reasoning network for edge computing environment. IEEE Trans. Ind. Inform. 2019, 15, 4285–4294. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Gu, X.; Ma, L.; Yan, S. Temperature error correction based on BP neural network in meteorological WSN. Int. J. Sens. Netw. 2017, 23, 265–278. [Google Scholar] [CrossRef]
- Yi, L.; Luo, X.; Zhu, C.; Wang, L.; Xu, Z.; Lu, H. ConnSpoiler: Disrupting C&C communication of IoT-based botnet through fast detection of anomalous domain queries. IEEE Trans. Ind. Inform. 2020, 16. [Google Scholar] [CrossRef]
- Qiu, J.; Tian, Z.; Du, C.; Zuo, Q.; Su, S.; Fang, B. A survey on access control in the age of internet of things. IEEE Internet Things J. 2020. [Google Scholar] [CrossRef]
- Qiu, J.; Du, L.; Zhang, D.; Su, S.; Tian, Z. Nei-TTE: Intelligent traffic time estimation based on fine-grained time derivation of road segments for smart city. IEEE Trans. Ind. Inform. 2020, 16, 2659–2666. [Google Scholar] [CrossRef]
- Wang, B.; Kong, W.; Guan, H.; Xiong, N.N. Air quality forcasting based on gated recurrent long short term memory model in internet of things. IEEE Access 2019, 7, 69524–69534. [Google Scholar] [CrossRef]
- Zhu, L.; Heidemann, J. LDplayer: DNS experimentation at scale. In Proceedings of the Internet Measurement Conference 2018, Boston, MA, USA, 31 October–2 November 2018; pp. 119–132. [Google Scholar]
- Bermudez, I.N.; Mellia, M.; Muna, M.M.; Keralapura, R.; Nucci, A. DNS to the rescue: Discerning content and services in a tangled web. In Proceedings of the 2012 Internet Measurement Conference, Boston, MA, USA, 14–16 November 2012; pp. 413–426. [Google Scholar]
- Kara, A.M.; Binsalleeh, H.; Mannan, M.; Youssef, A.; Debbabi, M. Detection of malicious payload distribution channels in DNS. In Proceedings of the 2014 IEEE International Conference on Communications (ICC), Sydney, Australia, 10–14 June 2014; pp. 853–858. [Google Scholar]
- RAPID. Available online: https://opendata.rapid7.com/sonar.fdns_v2/ (accessed on 2 February 2020).
- Xu, W.; Tao, Y.; Guan, X. Experimental Comparison of Free IP Geolocation Services. In Security with Intelligent Computing and Big-data Services; SICBS 2018. Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2020; Volume 895. [Google Scholar]
- ipplus360. Available online: https://www.ipplus360.com/ (accessed on 2 February 2020).
- TaoBao IP. Available online: http://ip.taobao.com/service/getIpInfo.php?ip=myip (accessed on 2 February 2020).
- ip2location. Available online: https://lite.ip2location.com/ (accessed on 2 February 2020).
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, S.; Tian, Z.; Cheng, X.; Jiang, Y.; Wang, L.; Su, S. A Quantitative Method for the DNS Isolation Management Risk Estimation. Electronics 2020, 9, 922. https://doi.org/10.3390/electronics9060922
Liang S, Tian Z, Cheng X, Jiang Y, Wang L, Su S. A Quantitative Method for the DNS Isolation Management Risk Estimation. Electronics. 2020; 9(6):922. https://doi.org/10.3390/electronics9060922
Chicago/Turabian StyleLiang, SiYu, ZhiHong Tian, XinDa Cheng, Yu Jiang, Le Wang, and Shen Su. 2020. "A Quantitative Method for the DNS Isolation Management Risk Estimation" Electronics 9, no. 6: 922. https://doi.org/10.3390/electronics9060922
APA StyleLiang, S., Tian, Z., Cheng, X., Jiang, Y., Wang, L., & Su, S. (2020). A Quantitative Method for the DNS Isolation Management Risk Estimation. Electronics, 9(6), 922. https://doi.org/10.3390/electronics9060922