Resonant Cavity Antennas for 5G Communication Systems: A Review
Abstract
:1. Introduction
1.1. History
1.2. Analytical Methods
2. Research Directions
2.1. 3-dB Gain Bandwidth Improvement
2.1.1. Positive Reflection Phase Gradient
2.1.2. PRS Unit Cell with Sharp Resonance
2.1.3. New Configuration of PRS Structures: Nonuniform PRS Structures
2.1.4. Shape Manipulation of the Conventional RCA Configuration
2.1.5. Array Feed
2.2. Directivity Enhancement: Aperture Efficiency Improvement
2.3. Circular Polarization
2.4. Reconfigurable RCAs
2.5. Further Fields of Study: Low Profile and Multi-Band RCAs
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
5G | Fifth-Generation |
MMW | Millimeter-Wave |
RC | Resonant Cavity |
PRS | Partially Reflective Surface |
FPCA | Fabry–Pérot Cavity Antenna |
EBG | Electromagnetic-Band-gap |
LW | Leaky- Wave |
MTM | Metamaterial |
FSS | Frequency Selective Surface |
TPG | Transverse Permitivity Gradient |
GBP | Gain-Bandwidth Product |
FZP | Fresnel Zone Plate |
CP | Circularly-Polarized |
HIS | High Impedance Surfaces |
AMC | Artificial Magnetic Conductors |
FSS | Frequency Selective Surface |
PRGW | Printed Ridge-Gap Waveguide |
GSP | Gridded Square Patch |
SSLP | Square Slot-Loaded Patch |
WSDL | Wedge-Shaped Dielectric Lens |
DMGD | Discrete Multilevel Grating Dielectric |
PGS | Printed Gradient Surface |
PDGS | Perforated Dielectric Gradient Surface |
CM | Characteristic Mode |
MEFSS | Miniaturized-Element Frequency Selective Surface |
References
- Thompson, J.; Ge, X.; Wu, H.C.; Irmer, R.; Jiang, H.; Fettweis, G.; Alamouti, S. 5G wireless communication systems: Prospects and challenges [Guest Editorial]. IEEE Commun. Mag. 2014, 52, 62–64. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Sun, S.; Mayzus, R.; Zhao, H.; Azar, Y.; Wang, K.; Wong, G.N.; Schulz, J.K.; Samimi, M.; Gutierrez, F. Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access 2013, 1, 335–349. [Google Scholar] [CrossRef]
- Honari, M.M.; Mirzavand, R.; Melzer, J.; Mousavi, P. A new aperture antenna using substrate integrated waveguide corrugated structures for 5G applications. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 254–257. [Google Scholar] [CrossRef]
- Mahajan, M.; Jyoti, R.; Sood, K.; Sharma, S.B. A Method of Generating Simultaneous Contoured and Pencil Beams From Single Shaped Reflector Antenna. IEEE Trans. Antennas Propag. 2013, 61, 5297–5301. [Google Scholar] [CrossRef]
- Deguchi, H.; Tsuji, M.; Shigesawa, H. Compact low-cross-polarization horn antennas with serpentine-shaped taper. IEEE Trans. Antennas Propag. 2004, 52, 2510–2516. [Google Scholar] [CrossRef]
- Honari, M.M.; Abdipour, A.; Moradi, G. Aperture-coupled multi-layer broadband ring-patch antenna array. IEICE Electron. Expr. 2012, 9, 250–255. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.J.; Guo, Y.X.; Liu, Z.G. W-Band Large-Scale High-Gain Planar Integrated Antenna Array. IEEE Trans. Antennas Propag. 2014, 62, 3370–3373. [Google Scholar] [CrossRef]
- Fan, C.; Yang, W.; Che, W.; He, S.; Xue, Q. A Wideband and Low-Profile Discrete Dielectric Lens Using 3-D Printing Technology. IEEE Trans. Antennas Propag. 2018, 66, 5160–5169. [Google Scholar] [CrossRef]
- Honari, M.M.; Mirzavand, R.; Mousavi, P. A high-gain planar surface plasmon wave antenna based on substrate integrated waveguide technology with size reduction. IEEE Trans. Antennas Propag. 2018, 66, 2605–2609. [Google Scholar] [CrossRef]
- Honari, M.M.; Sarabandi, K.; Mousavi, P. Dual-Band High-Gain Planar Corrugated Antennas with Integrated Feeding Structure. IEEE Access 2020, 8, 67075–67084. [Google Scholar] [CrossRef]
- Honari, M.M.; Sarabandi, K.; Mousavi, P. Design and Analysis of Corrugated Antennas Based on Surface Susceptance of a Single Cell of Corrugation. IEEE Trans. Antennas Propag. 2020. [Google Scholar] [CrossRef]
- Amjadi, S.M.; Sarabandi, K. A low-profile, high-gain, and full-band subarray of cavity-backed slot antenna. IEEE Trans. Antennas Propag. 2017, 65, 3456–3464. [Google Scholar] [CrossRef]
- Guan, D.F.; Ding, C.; Qian, Z.P.; Zhang, Y.S.; Guo, Y.J.; Gong, K. Broadband high-gain SIW cavity-backed circular-polarized array antenna. IEEE Trans. Antennas Propag. 2016, 64, 1493–1497. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Cao, F.; Pan, J. A single-layer dual-frequency shared-aperture SIW slot antenna array with a small frequency ratio. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1048–1051. [Google Scholar] [CrossRef]
- Honari, M.M.; Mirzavand, R.; Saghlatoon, H.; Mousavi, P. A dual-band low-profile aperture antenna with substrate-integrated waveguide grooves. IEEE Trans. Antennas Propag. 2016, 64, 1561–1566. [Google Scholar] [CrossRef]
- Mirzavand, R.; Honari, M.M.; Mousavi, P. Direct-Conversion Sensor for Wireless Sensing Networks. IEEE Trans. Ind. Electron. 2017, 64, 9675–9682. [Google Scholar] [CrossRef]
- Saghlatoon, H.; Mirzavand, R.; Honari, M.M.; Mousavi, P. Sensor Antenna Transmitter System for Material Detection in Wireless-Sensor-Node Applications. IEEE Sens. J. 2018, 18, 8812–8819. [Google Scholar] [CrossRef]
- Khalid, N.; Mirzavand, R.; Saghlatoon, H.; Honari, M.M.; Mousavi, P. A Three-Port Zero-Power RFID Sensor Architecture for IoT Applications. IEEE Access 2020, 8, 66888–66897. [Google Scholar] [CrossRef]
- Mirzavand, R.; Honari, M.M.; Laribi, B.; Khorshidi, B.; Sadrzadeh, M.; Mousavi, P. An unpowered sensor node for real-time water quality assessment (humic acid detection). Electronics 2018, 7, 231. [Google Scholar] [CrossRef] [Green Version]
- Mirzavand, R.; Honari, M.M.; Mousavi, P. High-resolution dielectric sensor based on injection-locked oscillators. IEEE Sens. J. 2017, 18, 141–148. [Google Scholar] [CrossRef]
- Trentini, G.V. Partially reflecting sheet arrays. IRE Trans. Antennas Propag. 1956, 4, 666–671. [Google Scholar] [CrossRef]
- Jackson, D.; Alexopoulos, N. Gain enhancement methods for printed circuit antennas. IEEE Trans. Antennas Propag. 1985, 33, 976–987. [Google Scholar] [CrossRef]
- Yang, H.; Alexopoulos, N. Gain enhancement methods for printed circuit antennas through multiple superstrates. IEEE Trans. Antennas Propag. 1987, 35, 860–863. [Google Scholar] [CrossRef]
- Jackson, D.R.; Oliner, A.A. A leaky-wave analysis of the high-gain printed antenna configuration. IEEE Trans. Antennas Propag. 1988, 36, 905–910. [Google Scholar] [CrossRef]
- Jackson, D.; Oliner, A.; Ip, A. Leaky-wave propagation and radiation for a narrow-beam multiple-layer dielectric structure. IEEE Trans. Antennas Propag. 1993, 41, 344–348. [Google Scholar] [CrossRef]
- James, J.; Kinany, S.; Peel, P.; Andrasic, G. Leaky-wave multiple dichroic beamformers. Electron. Lett. 1989, 25, 1209–1211. [Google Scholar] [CrossRef]
- Leger, L.; Monediere, T.; Jecko, B. Enhancement of gain and radiation bandwidth for a planar 1-D EBG antenna. IEEE Microw. Wirel. Compon. Lett. 2005, 15, 573–575. [Google Scholar] [CrossRef]
- Hashmi, R.M.; Esselle, K.P. A wideband EBG resonator antenna with an extremely small footprint area. Microw. Opt. Technol. Lett. 2015, 57, 1531–1535. [Google Scholar] [CrossRef]
- Meng, F.; Sharma, S.K. A Wideband Resonant Cavity Antenna with Compact Partially Reflective Surface. IEEE Trans. Antennas Propag. 2020, 68, 1155–1160. [Google Scholar] [CrossRef]
- Zhao, T.; Jackson, D.R.; Williams, J.T.; Yang, H.Y.; Oliner, A.A. 2-D periodic leaky-wave antennas-part I: Metal patch design. IEEE Trans. Antennas Propag. 2005, 53, 3505–3514. [Google Scholar] [CrossRef]
- Zhao, T.; Jackson, D.R.; Williams, J.T. 2-D periodic leaky-wave Antennas-part II: Slot design. IEEE Trans. Antennas Propag. 2005, 53, 3515–3524. [Google Scholar] [CrossRef]
- Baba, A.A.; Hashmi, R.M.; Esselle, K.P.; Marin, J.G.; Hesselbarth, J. Broadband Partially Reflecting Superstrate-Based Antenna for 60 GHz Applications. IEEE Trans. Antennas Propag. 2019, 67, 4854–4859. [Google Scholar] [CrossRef]
- Vaidya, A.R.; Gupta, R.K.; Mishra, S.K.; Mukherjee, J. High-gain low side lobe level Fabry Perot cavity antenna with feed patch array. Prog. Electromagn. Res. C 2012, 28, 223–238. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, S.; Jackson, D.R.; Almutawa, A.T.; Kazemi, H.; Capolino, F.; Long, S.A. A Cross-Shaped 2D Periodic Leaky-Wave Antenna. IEEE Trans. Antennas Propag. 2019. [Google Scholar] [CrossRef]
- Zhao, T.; Jackson, D.R.; Williams, J.T.; Oliner, A.A. General formulas for 2-D leaky-wave antennas. IEEE Trans. Antennas Propag. 2005, 53, 3525–3533. [Google Scholar] [CrossRef]
- Lovat, G.; Burghignoli, P.; Capolino, F.; Jackson, D. Highly-directive planar leaky-wave antennas: A comparison between metamaterial-based and conventional designs. Proc. EuMA 2006, 2, 12–21. [Google Scholar]
- Lovat, G.; Burghignoli, P.; Jackson, D.R. Fundamental properties and optimization of broadside radiation from uniform leaky-wave antennas. IEEE Trans. Antennas Propag. 2006, 54, 1442–1452. [Google Scholar] [CrossRef]
- Foroozesh, A.; Shafai, L. Investigation into the effects of the patch-type FSS superstrate on the high-gain cavity resonance antenna design. IEEE Trans. Antennas Propag. 2009, 58, 258–270. [Google Scholar] [CrossRef]
- Sengupta, S.; Jackson, D.; Long, S. Modal Analysis and Propagation Characteristics of Leaky Waves on a 2-D Periodic Leaky-Wave Antenna. IEEE Trans. Microw. Theory Tech. 2018, 1–11. [Google Scholar] [CrossRef]
- Almutawa, A.T.; Hosseini, A.; Jackson, D.R.; Capolino, F. Leaky-Wave Analysis of Wideband Planar Fabry–Pérot Cavity Antennas Formed by a Thick PRS. IEEE Trans. Antennas Propag. 2019, 67, 5163–5175. [Google Scholar] [CrossRef]
- Almutawa, A.T.; Capolino, F.; Jackson, D.R. Overview of Wideband Fabry-Perot Cavity Antennas with Thick Partially Reflective Surface. In Proceedings of the 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA), Granada, Spain, 9–13 September 2019; pp. 1308–1310. [Google Scholar]
- Hussain, N.; Jeong, M.; Park, J.; Kim, N. A Broadband Circularly Polarized Fabry-Perot Resonant Antenna Using A Single-Layered PRS for 5G MIMO Applications. IEEE Access 2019, 7, 42897–42907. [Google Scholar] [CrossRef]
- Gardelli, R.; Albani, M.; Capolino, F. Array thinning by using antennas in a Fabry–Perot cavity for gain enhancement. IEEE Trans. Antennas Propag. 2006, 54, 1979–1990. [Google Scholar] [CrossRef] [Green Version]
- Boutayeb, H.; Denidni, T.A. Internally excited Fabry-Perot type cavity: Power normalization and directivity evaluation. IEEE Antennas Wirel. Propag. Lett. 2006, 5, 159–162. [Google Scholar] [CrossRef]
- Liu, Z.G.; Guo, Y.X. Effect of primary source location on fabry-perot resonator antenna with PEC or PMC ground plate. J. Infrared Millim. Terahertz Waves 2010, 31, 1022–1031. [Google Scholar] [CrossRef]
- Hashmi, R.M.; Esselle, K.P. Enhancing the performance of EBG resonator antennas by individually truncating the superstructure layers. IET Microw. Antennas Propag. 2016, 10, 1048–1055. [Google Scholar] [CrossRef]
- Feresidis, A.P.; Vardaxoglou, J. High gain planar antenna using optimised partially reflective surfaces. IEE Proc. Microw. Anten. Propag. 2001, 148, 345–350. [Google Scholar] [CrossRef]
- Ge, Y.; Esselle, K.P.; Bird, T.S. The use of simple thin partially reflective surfaces with positive reflection phase gradients to design wideband, low-profile EBG resonator antennas. IEEE Trans. Antennas Propag. 2011, 60, 743–750. [Google Scholar] [CrossRef]
- Mateo-Segura, C.; Feresidis, A.P.; Goussetis, G. Bandwidth enhancement of 2-D leaky-wave antennas with double-layer periodic surfaces. IEEE Trans. Antennas Propag. 2013, 62, 586–593. [Google Scholar] [CrossRef]
- Al-Tarifi, M.A.; Anagnostou, D.E.; Amert, A.K.; Whites, K.W. Bandwidth enhancement of the resonant cavity antenna by using two dielectric superstrates. IEEE Trans. Antennas Propag. 2013, 61, 1898–1908. [Google Scholar] [CrossRef]
- Wang, N.; Li, J.; Wei, G.; Talbi, L.; Zeng, Q.; Xu, J. Wideband Fabry–Perot resonator antenna with two layers of dielectric superstrates. IEEE Antennas Wirel. Propag. Lett. 2014, 14, 229–232. [Google Scholar] [CrossRef]
- Konstantinidis, K.; Feresidis, A.P.; Hall, P.S. Broadband sub-wavelength profile high-gain antennas based on multi-layer metasurfaces. IEEE Trans. Antennas Propag. 2014, 63, 423–427. [Google Scholar] [CrossRef]
- Konstantinidis, K.; Feresidis, A.P.; Hall, P.S. Multilayer partially reflective surfaces for broadband Fabry-Perot cavity antennas. IEEE Trans. Antennas Propag. 2014, 62, 3474–3481. [Google Scholar] [CrossRef]
- Hashmi, R.M.; Zeb, B.A.; Esselle, K.P. Wideband high-gain EBG resonator antennas with small footprints and all-dielectric superstructures. IEEE Trans. Antennas Propag. 2014, 62, 2970–2977. [Google Scholar] [CrossRef]
- Wang, N.; Talbi, L.; Zeng, Q.; Xu, J. Wideband Fabry-Perot resonator antenna with electrically thin dielectric superstrates. IEEE Access 2018, 6, 14966–14973. [Google Scholar] [CrossRef]
- Nguyen-Trong, N.; Tran, H.H.; Nguyen, T.K.; Abbosh, A.M. Wideband Fabry–Perot antennas employing multilayer of closely spaced thin dielectric slabs. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1354–1358. [Google Scholar] [CrossRef]
- Zeb, B.; Hashmi, R.; Esselle, K. Wideband gain enhancement of slot antenna using one unprinted dielectric superstrate. Electron. Lett. 2015, 51, 1146–1148. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, S.; Bornemann, J.; Zhao, X.; Kong, X.; Huang, Z.; Bian, B.; Wang, D. A Low-RCS, High-GBP Fabry–Perot Antenna With Embedded Chessboard Polarization Conversion Metasurface. IEEE Access 2020, 8, 80183–80194. [Google Scholar] [CrossRef]
- Wang, N.; Liu, Q.; Wu, C.; Talbi, L.; Zeng, Q.; Xu, J. Wideband Fabry-Perot resonator antenna with two complementary FSS layers. IEEE Trans. Antennas Propag. 2014, 62, 2463–2471. [Google Scholar]
- Ge, Y.; Sun, Z.; Chen, Z.; Chen, Y.Y. A high-gain wideband low-profile Fabry–Pérot resonator antenna with a conical short horn. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1889–1892. [Google Scholar] [CrossRef]
- Goudarzi, A.; Movahhedi, M.; Honari, M.M.; Saghlatoon, H.; Mirzavand, R.; Mousavi, P. Wideband High-Gain Circularly Polarized Resonant Cavity Antenna with a Thin Complementary Partially Reflective Surface. IEEE Trans. Antennas Propag. 2020, 1–6. [Google Scholar] [CrossRef]
- Goudarzi, A.; Movahhedi, M.; Honari, M.M.; Mousavi, P. A Wideband CP Resonant Cavity Antenna with a Self-Complimentary Partially Reflective Surface. In Proceedings of the 2020 IEEE AP-S Symposium on Antennas and Propagatio, Montréal, QC, Canada, 5–10 July 2020. [Google Scholar]
- Ge, Y.; Wang, C. A millimeter-wave wideband high-gain antenna based on the fabry-perot resonator antenna concept. PIER C 2014, 50, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Han, W.; Yang, F.; Ouyang, J.; Yang, P. Low-cost wideband and high-gain slotted cavity antenna using high-order modes for millimeter-wave application. IEEE Trans. Antennas Propag. 2015, 63, 4624–4631. [Google Scholar] [CrossRef]
- Attia, H.; Abdelghani, M.L.; Denidni, T.A. Wideband and high-gain millimeter-wave antenna based on FSS Fabry–Perot cavity. IEEE Trans. Antennas Propag. 2017, 65, 5589–5594. [Google Scholar] [CrossRef]
- Singh, A.K.; Abegaonkar, M.P.; Koul, S.K. High-gain and high-aperture-efficiency cavity resonator antenna using metamaterial superstrate. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2388–2391. [Google Scholar] [CrossRef]
- Nguyen-Trong, N.; Tran, H.H.; Nguyen, T.K.; Abbosh, A.M. A compact wideband circular polarized Fabry-Perot antenna using resonance structure of thin dielectric slabs. IEEE Access 2018, 6, 56333–56339. [Google Scholar] [CrossRef]
- Tran, H.H.; Le, T.T.; Bui, C.D.; Nguyen, T.K. Broadband circularly polarized Fabry-Perot antenna utilizing Archimedean spiral radiator and multi-layer partially reflecting surface. Int. J. RF Microw. Comput.-Aided Eng. 2019, 29, e21647. [Google Scholar] [CrossRef]
- Hashmi, R.M.; Esselle, K.P. A class of extremely wideband resonant cavity antennas with large directivity-bandwidth products. IEEE Trans. Antennas Propag. 2015, 64, 830–835. [Google Scholar] [CrossRef]
- Baba, A.; Hashmi, R.; Esselle, K. Wideband gain enhancement of slot antenna using superstructure with optimised axial permittivity variation. Electron. Lett. 2016, 52, 266–268. [Google Scholar] [CrossRef]
- Baba, A.A.; Hashmi, R.M.; Esselle, K.P. Achieving a large gain-bandwidth product from a compact antenna. IEEE Trans. Antennas Propag. 2017, 65, 3437–3446. [Google Scholar] [CrossRef]
- Baba, A.A.; Hashmi, R.M.; Esselle, K.P.; Weily, A.R. Compact high-gain antenna with simple all-dielectric partially reflecting surface. IEEE Trans. Antennas Propag. 2018, 66, 4343–4348. [Google Scholar] [CrossRef]
- Baba, A.A.; Hashmi, R.M.; Asadnia, M.; Matekovits, L.; Esselle, K.P. A Stripline-Based Planar Wideband Feed for High-Gain Antennas with Partially Reflecting Superstructure. Micromachines 2019, 10, 308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baba, A.A.; Hashmi, R.M.; Esselle, K.P.; Ahmad, Z.; Hesselbarth, J. Millimeter-Wave Broadband Antennas with Low Profile Dielectric Covers. IEEE Access 2019. [Google Scholar] [CrossRef]
- Wu, F.; Luk, K.M. Wideband high-gain open resonator antenna using a spherically modified, second-order cavity. IEEE Trans. Antennas Propag. 2017, 65, 2112–2116. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, X.; Xu, K. 3-D printed Fabry–Perot resonator antenna with paraboloid-shape superstrate for wide gain bandwidth. Appl. Sci. 2017, 7, 1134. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.Y.; Qin, P.Y.; Guo, Y.J. Wideband Fabry-Perot cavity antenna with a shaped ground plane. IEEE Access 2017, 6, 2291–2297. [Google Scholar] [CrossRef]
- Qing-Yi, G.; Hang, W. A Fabry-Pérot Cavity Antenna for Millimeter-Wave Application. In Proceedings of the 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), Taiyuan, China, 18–21 July 2019; pp. 1–2. [Google Scholar]
- Guo, Q.Y.; Wong, H. A Millimeter-Wave Fabry–Pérot Cavity Antenna Using Fresnel Zone Plate Integrated PRS. IEEE Trans. Antennas Propag. 2019, 68, 564–568. [Google Scholar] [CrossRef]
- Weily, A.R.; Esselle, K.; Bird, T.S.; Sanders, B.C. Dual resonator 1-D EBG antenna with slot array feed for improved radiation bandwidth. IET Microw. Antennas Propag. 2007, 1, 198–203. [Google Scholar] [CrossRef]
- Afzal, M.U.; Esselle, K.P.; Lalbakhsh, A. A methodology to design a low-profile composite-dielectric phase-correcting structure. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1223–1227. [Google Scholar] [CrossRef]
- Hayat, T.; Afzal, M.U.; Lalbakhsh, A.; Esselle, K.P. 3-D-printed phase-rectifying transparent superstrate for resonant-cavity antenna. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1400–1404. [Google Scholar] [CrossRef]
- Hayat, T.; Afzal, M.U.; Lalbakhsh, A.; Esselle, K.P. Additively Manufactured Perforated Superstrate to Improve Directive Radiation Characteristics of Electromagnetic Source. IEEE Access 2019, 7, 153445–153452. [Google Scholar] [CrossRef]
- Xie, P.; Wang, G.; Li, H.; Gao, X. A Novel Methodology for Gain Enhancement of the Fabry-Pérot Antenna. IEEE Access 2019, 7, 176170–176176. [Google Scholar] [CrossRef]
- Zhou, L.; Duan, X.; Luo, Z.; Zhou, Y.; Chen, X. High Directivity Fabry-Perot Antenna with a Nonuniform Partially Reflective Surface and a Phase Correcting Structure. IEEE Trans. Antennas Propag. 2020. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, X.; Duan, X. Fabry–Pérot resonator antenna with high aperture efficiency using a double-layer nonuniform superstrate. IEEE Trans. Antennas Propag. 2018, 66, 2061–2066. [Google Scholar] [CrossRef]
- Lalbakhsh, A.; Afzal, M.U.; Esselle, K.P.; Smith, S.L.; Zeb, B.A. Single-dielectric wideband partially reflecting surface with variable reflection components for realization of a compact high-gain resonant cavity antenna. IEEE Trans. Antennas Propag. 2019, 67, 1916–1921. [Google Scholar] [CrossRef]
- Lalbakhsh, A.; Afzal, M.U.; Esselle, K.P.; Smith, S.L. Wideband near-field correction of a Fabry-Perot resonator antenna. IEEE Trans. Antennas Propag. 2019, 67, 1975–1980. [Google Scholar] [CrossRef]
- Ge, Y.; Esselle, K.P.; Hao, Y. Design of low-profile high-gain EBG resonator antennas using a genetic algorithm. IEEE Antennas Wirel. Propag. Lett. 2007, 6, 480–483. [Google Scholar] [CrossRef]
- Zheng, Y.; Gao, J.; Zhou, Y.; Cao, X.; Yang, H.; Li, S.; Li, T. Wideband gain enhancement and RCS reduction of Fabry–Perot resonator antenna with chessboard arranged metamaterial superstrate. IEEE Trans. Antennas Propag. 2017, 66, 590–599. [Google Scholar] [CrossRef]
- Qin, F.; Gao, S.; Wei, G.; Luo, Q.; Mao, C.; Gu, C.; Xu, J.; Li, J. Wideband circularly polarized Fabry-Perot antenna [antenna applications corner]. IEEE Antennas Propag. Mag. 2015, 57, 127–135. [Google Scholar] [CrossRef]
- Ratni, B.; De Lustrac, A.; Villers, S.; Nawaz Burokur, S. Low-profile circularly polarized fabry-perot cavity antenna. Microw. Opt. Tech. Lett. 2016, 58, 2957–2960. [Google Scholar] [CrossRef]
- Tran, H.H.; Park, I. Compact wideband circularly polarised resonant cavity antenna using a single dielectric superstrate. IET Microw. Antenna Propag. 2016, 10, 729–736. [Google Scholar] [CrossRef]
- Ta, S.; Nguyen, T. AR bandwidth and gain enhancements of patch antenna using single dielectric superstrate. Electron. Lett. 2017, 53, 1015–1017. [Google Scholar] [CrossRef]
- Ta, S.X.; Nguyen, T.H.Y.; Nguyen, K.K.; Dao-Ngoc, C. Bandwidth-enhancement of circularly-polarized fabry-perot antenna using single-layer partially reflective surface. Int. J. RF Microw. Comput. Aided Eng. 2019, e21774. [Google Scholar] [CrossRef]
- Cao, W.; Lv, X.; Wang, Q.; Zhao, Y.; Yang, X. Wideband circularly polarized Fabry–Pérot resonator antenna in Ku-band. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 586–590. [Google Scholar] [CrossRef]
- Cheng, Y.; Dong, Y. Bandwidth Enhanced Circularly Polarized Fabry-Perot Cavity Antenna Using Metal Strips. IEEE Access 2020, 60189–60198. [Google Scholar] [CrossRef]
- Diblanc, M.; Rodes, E.; Arnaud, E.; Thevenot, M.; Monediere, T.; Jecko, B. Circularly polarized metallic EBG antenna. IEEE Microw. Wirel. Compon. Lett. 2005, 15, 638–640. [Google Scholar] [CrossRef]
- Ju, J.; Kim, D.; Lee, W.; Choi, J. Design Method of a Circularly-Polarized Antenna Using Fabry-Pérot Cavity Structure. ETRI J. 2011, 33, 163–168. [Google Scholar] [CrossRef] [Green Version]
- Orr, R.; Goussetis, G.; Fusco, V. Design method for circularly polarized Fabry–Perot cavity antennas. IEEE Trans. Antennas Propag. 2014, 62, 19–26. [Google Scholar] [CrossRef]
- Liu, Z.G.; Lu, W.B. Low-profile design of broadband high gain circularly polarized Fabry-Perot resonator antenna and its array with linearly polarized feed. IEEE Access 2017, 5, 7164–7172. [Google Scholar] [CrossRef]
- Srivastava, K.; Kumar, A.; Chaudhary, P.; Kanaujia, B.K.; Dwari, S.; Verma, A.K.; Esselle, K.P.; Mittra, R. Wideband and high-gain circularly polarised microstrip antenna design using sandwiched metasurfaces and partially reflecting surface. IET Microw. Antenna Propag. 2018, 13, 305–312. [Google Scholar] [CrossRef]
- Muhammad, S.A.; Sauleau, R.; Valerio, G.; Le Coq, L.; Legay, H. Self-polarizing Fabry–Perot antennas based on polarization twisting element. IEEE Trans. Antennas Propag. 2012, 61, 1032–1040. [Google Scholar] [CrossRef]
- Arnaud, E.; Chantalat, R.; Monédière, T.; Rodes, E.; Thevenot, M. Performance enhancement of self-polarizing metallic EBG antennas. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 538–541. [Google Scholar] [CrossRef]
- Hussain, N.; Jeong, M.J.; Abbas, A.; Kim, T.J.; Kim, N. A Metasurface-Based Low-Profile Wideband Circularly Polarized Patch Antenna for 5G Millimeter-Wave Systems. IEEE Access 2020, 8, 22127–22135. [Google Scholar] [CrossRef]
- Lin, X.; Seet, B.C.; Joseph, F.; Li, E. Flexible fractal electromagnetic bandgap for millimeter-wave wearable antennas. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1281–1285. [Google Scholar] [CrossRef]
- Tang, M.C.; Shi, T.; Ziolkowski, R.W. A Study of 28 GHz, Planar, multilayered, electrically small, broadside radiating, huygens source antennas. IEEE Trans. Antennas Propag. 2017, 65, 6345–6354. [Google Scholar] [CrossRef] [Green Version]
- Ourir, A.; Burokur, S.; de Lustrac, A. Electronically reconfigurable metamaterial for compact directive cavity antennas. Electron. Lett. 2007, 43, 698–700. [Google Scholar] [CrossRef]
- Weily, A.R.; Bird, T.S.; Guo, Y.J. A reconfigurable high-gain partially reflecting surface antenna. IEEE Trans. Antennas Propag. 2008, 56, 3382–3390. [Google Scholar] [CrossRef]
- Burokur, S.; Daniel, J.P.; Ratajczak, P.; De Lustrac, A. Tunable bilayered metasurface for frequency reconfigurable directive emissions. Appl. Phys. Lett. 2010, 97, 064101. [Google Scholar] [CrossRef]
- Huang, C.; Pan, W.; Ma, X.; Luo, X. A frequency reconfigurable directive antenna with wideband low-RCS property. IEEE Trans. Antennas Propag. 2016, 64, 1173–1178. [Google Scholar] [CrossRef]
- Xie, P.; Wang, G.M. Design of a frequency reconfigurable Fabry-Pérot cavity antenna with single layer partially reflecting surface. Prog. Electromagn. Res. 2017, 70, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Edalati, A.; Denidni, T.A. Reconfigurable beamwidth antenna based on active partially reflective surfaces. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 1087–1090. [Google Scholar] [CrossRef]
- Debogovic, T.; Perruisseau-Carrier, J.; Bartolic, J. Partially reflective surface antenna with dynamic beamwidth control. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 1157–1160. [Google Scholar] [CrossRef]
- Debogović, T.; Perruisseau-Carrier, J. Array-fed partially reflective surface antenna with independent scanning and beamwidth dynamic control. IEEE Trans. Antennas Propag. 2013, 62, 446–449. [Google Scholar] [CrossRef]
- Vaidya, A.R.; Gupta, R.K.; Mishra, S.K.; Mukherjee, J. Right-hand/left-hand circularly polarized high-gain antennas using partially reflective surfaces. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 431–434. [Google Scholar] [CrossRef]
- Tan, G.N.; Yang, X.; Xue, H.G.; Lu, Z. A dual-polarized Fabry-Perot cavity antenna at Ka band with broadband and high gain. Prog. Electromagnet. Res. 2015, 60, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Lian, R.; Tang, Z.; Yin, Y. Design of a broadband polarization-reconfigurable Fabry–Perot resonator antenna. IEEE Antennas Wirel. Propag. Lett. 2017, 17, 122–125. [Google Scholar] [CrossRef]
- Qin, P.Y.; Ji, L.Y.; Chen, S.L.; Guo, Y.J. Dual-polarized wideband Fabry–Perot antenna with quad-layer partially reflective surface. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 551–554. [Google Scholar] [CrossRef]
- Zhu, H.; Qiu, Y.; Wei, G. A Broadband Dual-Polarized Antenna with Low Profile Using Nonuniform Metasurface. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1134–1138. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, H.; Li, L. Metasurface-inspired low profile polarization reconfigurable antenna with simple DC controlling circuit. IEEE Access 2019, 7, 45073–45079. [Google Scholar] [CrossRef]
- Liu, P.; Jiang, W.; Sun, S.; Xi, Y.; Gong, S. Broadband and Low-Profile Penta-Polarization Reconfigurable Metamaterial Antenna. IEEE Access 2020, 8, 21823–21831. [Google Scholar] [CrossRef]
- Comite, D.; Baccarelli, P.; Burghignoli, P.; Galli, A. Omnidirectional 2-D leaky-wave antennas with reconfigurable polarization. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2354–2357. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Z.G.; Wang, H.; Guo, Y. Metamaterial-inspired self-polarizing dual-band dual-orthogonal circularly polarized Fabry–Pérot resonator antennas. IEEE Trans. Antennas Propag. 2018, 67, 1329–1334. [Google Scholar] [CrossRef]
- Wu, F.; Luk, K.M. Circular Polarization and Reconfigurability of Fabry–Pérot Resonator Antenna Through Metamaterial-Loaded Cavity. IEEE Trans. Antennas Propag. 2019, 67, 2196–2208. [Google Scholar] [CrossRef]
- Niaz, M.W.; Yin, Y.; Zheng, S.; Zhao, Z. Dual-polarized low sidelobe Fabry-Perot antenna using tapered partially reflective surface. Int. J. RF Microw. Comput.-Aided Eng. 2019, e22070. [Google Scholar] [CrossRef]
- Swain, R.; Chatterjee, A.; Nanda, S.; Mishra, R.K. A Linear-to-Circular Polarization Conversion Metasurface Based Wideband Aperture Coupled Antenna. J. Electr. Eng. Technol. 2020, 1–7. [Google Scholar] [CrossRef]
- Ourir, A.; Burokur, S.; de Lustrac, A. Passive and active reconfigurable resonant metamaterial cavity for beam deflection. In Proceedings of the 2007 IEEE Antennas and Propagation Society International Symposium, Honolulu, HI, USA, 9–15 June 2007; pp. 4973–4976. [Google Scholar]
- Ourir, A.; Burokur, S.N.; Yahiaoui, R.; de Lustrac, A. Directive metamaterial-based subwavelength resonant cavity antennas–Applications for beam steering. C. R. Phys. 2009, 10, 414–422. [Google Scholar] [CrossRef]
- Edalati, A.; Denidni, T.A. High-gain reconfigurable sectoral antenna using an active cylindrical FSS structure. IEEE Trans. Antennas Propag. 2011, 59, 2464–2472. [Google Scholar] [CrossRef]
- Guo, Y.J.; Gómez-Tornero, J.L. Reconfigurable Fabry-Perot leaky-wave antennas. In Proceedings of the 2013 International Workshop on Antenna Technology (iWAT), Karlsruhe, Germany, 4–6 March 2013; pp. 390–393. [Google Scholar]
- Ji, L.Y.; Guo, Y.J.; Qin, P.Y.; Gong, S.X.; Mittra, R. A reconfigurable partially reflective surface (PRS) antenna for beam steering. IEEE Trans. Antennas Propag. 2015, 63, 2387–2395. [Google Scholar] [CrossRef]
- Afzal, M.U.; Esselle, K.P. Steering the Beam of Medium-to-High Gain Antennas Using Near-Field Phase Transformation. IEEE Trans. Antennas Propag. 2017, 65, 1680–1690. [Google Scholar] [CrossRef]
- Singh, K.; Afzal, M.U.; Kovaleva, M.; Esselle, K.P. Controlling the Most Significant Grating Lobes in Two-Dimensional Beam-Steering Systems with Phase-Gradient Metasurfaces. IEEE Trans. Antennas Propag. 2019, 68, 1389–1401. [Google Scholar] [CrossRef]
- Ji, L.Y.; Qin, P.Y.; Li, J.Y.; Zhang, L.X. 1-D Electronic Beam-Steering Partially Reflective Surface Antenna. IEEE Access 2019, 7, 115959–115965. [Google Scholar] [CrossRef]
- Ji, L.Y.; Zhang, Z.Y.; Liu, N.W. A two-dimensional beam-steering partially reflective surface (PRS) antenna using a reconfigurable FSS structure. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1076–1080. [Google Scholar] [CrossRef]
- Ji, L.Y.; Fu, S.; Zhang, L.X.; Li, J.Y. One-dimensional beam-steering Fabry–Perot cavity (FPC) antenna with a reconfigurable superstrate. Int. J. Microw. Wirel. Technol. 2020, 12, 233–239. [Google Scholar] [CrossRef]
- Das, P.; Mandal, K.; Lalbakhsh, A. Single-layer polarization-insensitive frequency selective surface for beam reconfigurability of monopole antennas. J. Electromagnet. Waves Appl. 2020, 34, 86–102. [Google Scholar] [CrossRef]
- Akbari, M.; Farahani, M.; Ghayekhloo, A.; Zarbakhsh, S.; Sebak, A.R.; Denidni, T. Phase Gradient Surface Approaches for 60 GHz Beam Tilting Antenna. IEEE Trans. Antennas Propag. 2020, 68, 4372–4385. [Google Scholar] [CrossRef]
- Xie, P.; Wang, G.; Li, H.; Liang, J. A dual-polarized two-dimensional beam-steering Fabry–Pérot cavity antenna with a reconfigurable partially reflecting surface. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2370–2374. [Google Scholar] [CrossRef]
- Ji, L.; Fu, G.; Gong, S.X. Array-fed beam-scanning partially reflective surface (PRS) antenna. Prog. Electromagnet. Res. 2016, 58, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.Y.; Wong, H. Wideband and high-gain Fabry–Pérot cavity antenna with switched beams for millimeter-wave applications. IEEE Trans. Antennas Propag. 2019, 67, 4339–4347. [Google Scholar] [CrossRef]
- Tran, H.H.; Le, T.T. A metasurface based low-profile reconfigurable antenna with pattern diversity. AEU Int. J. Electron. Commun. 2020, 115, 153037. [Google Scholar] [CrossRef]
- Guzmán-Quirós, R.; Weily, A.; Gómez-Tornero, J.; Guo, Y. A Fabry–Pérot antenna with two-dimensional electronic beam scanning. IEEE Trans. Antennas Propag. 2016, 64, 1536–1541. [Google Scholar] [CrossRef]
- Towfiq, M.A.; Bahceci, I.; Blanch, S.; Romeu, J.; Jofre, L.; Cetiner, B.A. A reconfigurable antenna with beam steering and beamwidth variability for wireless communications. IEEE Trans. Antennas Propag. 2018, 66, 5052–5063. [Google Scholar] [CrossRef] [Green Version]
- Mantash, M.; Denidni, T.A. CP Antenna Array With Switching-Beam Capability Using Electromagnetic Periodic Structures for 5G Applications. IEEE Access 2019, 7, 26192–26199. [Google Scholar] [CrossRef]
- Wang, S.; Feresidis, A.; Goussetis, G.; Vardaxoglou, J. Low-profile resonant cavity antenna with artificial magnetic conductor ground plane. Electron. Lett. 2004, 40, 405–406. [Google Scholar] [CrossRef] [Green Version]
- Feresidis, A.P.; Goussetis, G.; Wang, S.; Vardaxoglou, J.C. Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas. IEEE Trans. Antennas Propag. 2005, 53, 209–215. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Li, H.; Qin, Y.; Wei, Z.; Chan, C. Directive emissions from subwavelength metamaterial-based cavities. Appl. Phys. Lett. 2005, 86, 101101. [Google Scholar] [CrossRef]
- Ourir, A.; de Lustrac, A.; Lourtioz, J.M. All-metamaterial-based subwavelength cavities (λ/60) for ultrathin directive antennas. Appl. Phys. Lett. 2006, 88, 084103. [Google Scholar] [CrossRef]
- Kelly, J.R.; Kokkinos, T.; Feresidis, A.P. Analysis and design of sub-wavelength resonant cavity type 2-D leaky-wave antennas. IEEE Trans. Antennas Propag. 2008, 56, 2817–2825. [Google Scholar] [CrossRef]
- Mateo-Segura, C.; Goussetis, G.; Feresidis, A.P. Sub-wavelength profile 2-D leaky-wave antennas with two periodic layers. IEEE Trans. Antennas Propag. 2010, 59, 416–424. [Google Scholar] [CrossRef]
- Honari, M.M.; Mousavi, P.; Sarabandi, K. Miniaturized-Element Frequency Selective Surface Metamaterials: A Solution to Enhance Radiation Off of RFICs. IEEE Trans. Antennas Propag. 2019, 68, 1962–1972. [Google Scholar] [CrossRef]
- Konstantinidis, K.; Feresidis, A.P.; Hall, P.S. Dual subwavelength Fabry–Perot cavities for broadband highly directive antennas. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1184–1186. [Google Scholar] [CrossRef]
- Lin, F.H.; Chen, Z.N. Low-profile wideband metasurface antennas using characteristic mode analysis. IEEE Trans. Antennas Propag. 2017, 65, 1706–1713. [Google Scholar] [CrossRef]
- Qin, F.; Gao, S.; Luo, Q.; Wei, G.; Xu, J.; Li, J.; Wu, C.; Gu, C.; Mao, C. A triband low-profile high-gain planar antenna using Fabry–Perot cavity. IEEE Trans. Antennas Propag. 2017, 65, 2683–2688. [Google Scholar] [CrossRef] [Green Version]
- Deng, F.; Qi, J. Shrinking Profile of Fabry-Perot Cavity Antennas with Stratified Metasurfaces: Accurate Equivalent Circuit Design and Broadband High-Gain Performance. IEEE Antennas Wirel. Propag. Lett. 2019, 19, 208–212. [Google Scholar] [CrossRef]
- Ge, Y.; Esselle, K.P.; Bird, T.S. A method to design dual-band, high-directivity EBG resonator antennas using single-resonant, single-layer partially reflective surfaces. Prog. Electromagnet. Res. 2010, 13, 245–257. [Google Scholar] [CrossRef] [Green Version]
- Moghadas, H.; Daneshmand, M.; Mousavi, P. A dual-band high-gain resonant cavity antenna with orthogonal polarizations. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 1220–1223. [Google Scholar] [CrossRef]
- Zeb, B.A.; Ge, Y.; Esselle, K.P.; Sun, Z.; Tobar, M.E. A simple dual-band electromagnetic band gap resonator antenna based on inverted reflection phase gradient. IEEE Trans. Antennas Propag. 2012, 60, 4522–4529. [Google Scholar] [CrossRef]
- Moghadas, H.; Daneshmand, M.; Mousavi, P. Single-layer partially reflective surface for an orthogonally-polarised dual-band high-gain resonant cavity antenna. IET Microw. Antennas Propag. 2013, 7, 656–662. [Google Scholar] [CrossRef]
- Meng, F.; Sharma, S.K. A dual-band high-gain resonant cavity antenna with a single layer superstrate. IEEE Trans. Antennas Propag. 2015, 63, 2320–2325. [Google Scholar] [CrossRef]
- Lv, Y.H.; Ding, X.; Wang, B.Z. Dual-Wideband High-Gain Fabry-Perot Cavity Antenna. IEEE Access 2019, 68, 1389–1401. [Google Scholar] [CrossRef]
Ant | Max-gain (dB/dBic) | Pol. | Reconfigurability | (GHz) | Size | H | BW (%) | PRS Layer (#) |
---|---|---|---|---|---|---|---|---|
[58] | 17.2 | LP | - | 8.9 | 2.37 × 2.37 | 0.52 | 25.5 | 1 |
[61] | 12.5 | CP | - | 6.5 | 1.56× 1.56 | 0.44 | 35.5 | 1 |
[67] | 15 | CP | - | 6 | 1.2 × 1.2 | 0.6 | 47.4 | 2 |
[68] | 13.5 | CP | - | 6 | 2 × 2 | 0.7 | 73.7 | 3 |
[93] | 15.5 | CP | - | 6.3 | 1.7 × 1.7 | 0.46 | 25.6 | 1 |
[96] | 11.45 | CP | - | 12.4 | 1.45 × 1.45 | 0.4 | 29.3 | 1 |
[72] | 19.3 | LP | - | 10 | 2.5 × 2.5 | 0.4 | 51.8 | stair-case |
[65] | 16.8 | LP | - | 58.6 | 4.33 × 3.52 | 0.5 | 12.5 | 2 |
[74] | 19.5 | LP | - | 55.2 | 3.11 × 3.11 | 0.55 | 16.3 | stair-case |
[75] | 17.7 | LP | - | 12.2 | 4.32 × 4.32 | 1 | 25 | 1 |
[82] | 19 | LP | - | 10.3 | 3.95 × 3.95 | 0.5 | 9.4 | one flat and one stair-case |
[42] | 14.1 | CP | - | 26 | 1.58 × 1.58 | 0.7 | 18.5 | 1 |
[140] | 9.7 | LP |
| 5.4 | 1.8 × 1.8 | 0.5 | 3.7 | 1 |
[109] | 10 | LP |
| 5.2 | 4.16 × 4.16 | 0.4 | 13.4 | 1 |
[111] | 14.1 | LP |
| 9.05 | 2.74 × 2.74 | 0.53 | 9.97 | 1 |
[114] | - - - | LP |
| 1.985 | 3.3 × 3.3 | 0.5 | 5 | 1 |
[125] | 14.1 | LP/CP |
| 9.6 | 2.83 × 2.83 | 1.06 | 6.7 | 3 |
[139] | 22 | LP |
| 59 | 5.9 × 5.9 | 0.5 | 3.4 | 2 |
[115] | 14.7 | LP |
| 1.97 | 2.26 × 2.26 | 0.51 | 3 | 1 |
[145] | 8 | LP |
| 4.9 | 0.98 × 1.1 | 0.1 | 4 | 1 |
[153] | 14 | LP | - - - | 9.94 | 3.2 × 3.2 | 0.03 | 2.97 | 1 |
[159] | 19.6 18 | LP(V) LP(H) | - - - | 9.8 11.4 | 5 × 5 5.85 × 5.85 | 0.5 0.6 | 3 2.56 | 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goudarzi, A.; Honari, M.M.; Mirzavand, R. Resonant Cavity Antennas for 5G Communication Systems: A Review. Electronics 2020, 9, 1080. https://doi.org/10.3390/electronics9071080
Goudarzi A, Honari MM, Mirzavand R. Resonant Cavity Antennas for 5G Communication Systems: A Review. Electronics. 2020; 9(7):1080. https://doi.org/10.3390/electronics9071080
Chicago/Turabian StyleGoudarzi, Azita, Mohammad Mahdi Honari, and Rashid Mirzavand. 2020. "Resonant Cavity Antennas for 5G Communication Systems: A Review" Electronics 9, no. 7: 1080. https://doi.org/10.3390/electronics9071080
APA StyleGoudarzi, A., Honari, M. M., & Mirzavand, R. (2020). Resonant Cavity Antennas for 5G Communication Systems: A Review. Electronics, 9(7), 1080. https://doi.org/10.3390/electronics9071080