Non Invasive Skin Hydration Level Detection Using Machine Learning
Abstract
:1. Introduction
2. Methodology
2.1. Data Pre-Processing
2.2. Feature Selection
2.3. Machine Learning
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sagner, M.; McNeil, A.; Puska, P.; Auffray, C.; Price, N.D.; Hood, L.; Lavie, C.J.; Han, Z.G.; Chen, Z.; Brahmachari, S.K.; et al. The P4 health spectrum—A predictive, preventive, personalized and participatory continuum for promoting healthspan. Prog. Cardiovasc. Dis. 2017, 59, 506–521. [Google Scholar] [CrossRef] [Green Version]
- Rizwan, A.; Zoha, A.; Zhang, R.; Ahmad, W.; Arshad, K.; Ali, N.A.; Alomainy, A.; Imran, M.A.; Abbasi, Q.H. A review on the role of nano-communication in future healthcare systems: A big data analytics perspective. IEEE Access 2018, 6, 41903–41920. [Google Scholar] [CrossRef]
- Coniglio, M.A.; Fioriglio, C.; Laganà, P. Non-Intentionally Added Substances in PET-Bottled Mineral Water. Eur. Food Res. Technol. 2018, 244, 433–439. [Google Scholar]
- Aristotelous, P.; Aphamis, G.; Sakkas, G.K.; Andreou, E.; Pantzaris, M.; Kyprianou, T.; Hadjigeorgiou, G.M.; Manconi, M.; Giannaki, C.D. Effects of controlled dehydration on sleep quality and quantity: A polysomnographic study in healthy young adults. J. Sleep Res. 2019, 28, e12662. [Google Scholar] [CrossRef] [PubMed]
- Merhej, R. Dehydration and cognition: An understated relation. Int. J. Health Gov. 2019. [Google Scholar] [CrossRef]
- Kakade, S.S.; Jagadale, A.B. Development of system for estimation of Total Body Water (TBW), Fat Mass (FM), Fat Free Mass (FFM) using Bioimpedance analysis technique. In Proceedings of the 2016 International Conference on Communication and Signal Processing (ICCSP), Tamilnadu, India, 6–8 April 2016; pp. 0224–0226. [Google Scholar]
- Pross, N. Effects of dehydration on brain functioning: A life-span perspective. Ann. Nutr. Metab. 2017, 70, 30–36. [Google Scholar] [CrossRef]
- Howell, T.A.; Hadiwidjaja, A.; Tong, P.P.; Thomas, C.D.; Schrall, C. Method and Apparatus for Hydration Level of a Person. U.S. Patent 16/270,773, 8 February 2019. [Google Scholar]
- Lee, N.E.; Lee, T.H.; Seo, D.H.; Kim, S.Y. A smart water bottle for new seniors: Internet of Things (IoT) and health care services. Int. J. Bio-Sci. Bio-Technol. 2015, 7, 305–314. [Google Scholar] [CrossRef]
- Fortes, M.B.; Owen, J.A.; Raymond-Barker, P.; Bishop, C.; Elghenzai, S.; Oliver, S.J.; Walsh, N.P. Is this elderly patient dehydrated? Diagnostic accuracy of hydration assessment using physical signs, urine, and saliva markers. J. Am. Med. Dir. Assoc. 2015, 16, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, L.E. Hydration assessment techniques. Nutr. Rev. 2005, 63, S40–S54. [Google Scholar] [CrossRef]
- Garrett, D.C.; Rae, N.; Fletcher, J.R.; Zarnke, S.; Thorson, S.; Hogan, D.B.; Fear, E.C. Engineering approaches to assessing hydration status. IEEE Rev. Biomed. Eng. 2017, 11, 233–248. [Google Scholar] [CrossRef]
- Armstrong, L.E. Assessing hydration status: The elusive gold standard. J. Am. Coll. Nutr. 2007, 26, 575S–584S. [Google Scholar] [CrossRef] [PubMed]
- Khatun, M.F.; Rana, M.S.; Fahim, T.A.; Zuhori, S.T. Mathematical Models for Extracellular Fluid Measurement to Detect Hydration Level Based on Bioelectrical Impedance Analysis. In Proceedings of the 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), Edmonton, AB, Canada, 5–8 May 2019; pp. 1–5. [Google Scholar]
- Marra, M.; Sammarco, R.; De Lorenzo, A.; Iellamo, F.; Siervo, M.; Pietrobelli, A.; Donini, L.M.; Santarpia, L.; Cataldi, M.; Pasanisi, F.; et al. Assessment of body composition in health and disease using bioelectrical impedance analysis (BIA) and dual energy X-ray absorptiometry (DXA): A critical overview. Contrast Media Mol. Imaging 2019, 2019, 3548284. [Google Scholar] [CrossRef] [PubMed]
- Fish, R.M.; Geddes, L.A. Conduction of electrical current to and through the human body: A review. Eplasty 2009, 9, e44. [Google Scholar] [PubMed]
- Zhang, J.; Jin, X.; Sun, J.; Wang, J.; Sangaiah, A.K. Spatial and semantic convolutional features for robust visual object tracking. Multimed. Tools Appl. 2018. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, Z.; Sun, J.; Zou, X.; Wang, J. A cascaded R-CNN with multiscale attention and imbalanced samples for traffic sign detection. IEEE Access 2020, 8, 29742–29754. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, C.; Wang, J.; Yue, X.G.; Lim, S.J.; Al-Makhadmeh, Z.; Tolba, A. Training Convolutional Neural Networks with Multi-Size Images and Triplet Loss for Remote Sensing Scene Classification. Sensors 2020, 20, 1188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Wu, Y.; Feng, W.; Wang, J. Spatially attentive visual tracking using multi-model adaptive response fusion. IEEE Access 2019, 7, 83873–83887. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, W.; Lu, C.; Wang, J.; Sangaiah, A.K. Lightweight deep network for traffic sign classification. Ann. Telecommun. 2019. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, X.; Sun, J.; Wang, J.; Li, K. Dual model learning combined with multiple feature selection for accurate visual tracking. IEEE Access 2019, 7, 43956–43969. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, W.; Zuo, J.; Yang, K. The fire recognition algorithm using dynamic feature fusion and IV-SVM classifier. Clust. Comput. 2019, 22, 7665–7675. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, G.; Li, F.; Wang, J.; Sangaiah, A.K. Detecting seam carved images using uniform local binary patterns. Multimed. Tools Appl. 2018. [Google Scholar] [CrossRef]
- Rizwan, A.; Zoha, A.; Alomainy, A.; Ali, N.; Imran, M.; Abbasi, Q. Skin Conductance as Proxy for the Identification of Hydration Level in Human Body. In Proceedings of the 2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC), Nanjing, China, 6–8 May 2019; Volume 1, pp. 1–3. [Google Scholar]
- Rizwan, A.; Zoha, A.; Ozturk, M.; Alomainy, A.; Imran, M.A.; Abbasi, Q.H. Non-invasive hydration level estimation in human body using Galvanic Skin Response. IEEE Sens. J. 2020, 20, 4891–4900. [Google Scholar] [CrossRef] [Green Version]
- Kotsiantis, S.B.; Zaharakis, I.; Pintelas, P. Supervised machine learning: A review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 2007, 160, 3–24. [Google Scholar]
- Kassambara, A. Practical Guide to Cluster Analysis in R: Unsupervised Machine Learning; STHDA: London, UK, 2017; Volume 1. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
Posture | State | Number of Sample Per Window Size | ||
---|---|---|---|---|
Stand | Hydrated | 250 | 230 | 210 |
Dehydrated | 240 | 220 | 200 | |
Sit | Hydrated | 230 | 222 | 218 |
Dehydrated | 219 | 202 | 200 |
Feature (F) |
Mean (M) |
Square-Root (SR) |
Standard-Deviation (SD) |
Percentile (P) Kurtosis (K) |
Skew (S) |
Classifier | Features | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|---|
Logistic regression | M | 65.19% | 0.65 | 0.65 | 0.65 |
SD | 65.19% | 0.65 | 0.65 | 0.65 | |
SR | 65.19% | 0.65 | 0.65 | 0.65 | |
P | 65.19% | 0.65 | 0.65 | 0.65 | |
K | 65.19% | 0.65 | 0.65 | 0.65 | |
S | 65.19% | 0.65 | 0.65 | 0.65 | |
Random Forest | M | 91.64% | 0.93 | 0.92 | 0.92 |
SD | 91.64% | 0.93 | 0.92 | 0.92 | |
SR | 91.64% | 0.93 | 0.92 | 0.92 | |
P | 91.64% | 0.93 | 0.92 | 0.92 | |
K | 91.64% | 0.93 | 0.92 | 0.92 | |
S | 91.64% | 0.93 | 0.92 | 0.92 | |
KNN | M | 75.84% | 0.76 | 0.76 | 0.76 |
SD | 75.84% | 0.76 | 0.76 | 0.76 | |
SR | 75.84% | 0.76 | 0.76 | 0.76 | |
P | 75.84% | 0.76 | 0.76 | 0.76 | |
K | 75.84% | 0.76 | 0.76 | 0.76 | |
S | 75.84% | 0.76 | 0.76 | 0.76 | |
Naive Bayes | M | 54.14% | 0.54 | 0.54 | 0.54 |
SD | 54.14% | 0.54 | 0.54 | 0.54 | |
SR | 54.14% | 0.54 | 0.54 | 0.54 | |
P | 54.14% | 0.54 | 0.54 | 0.54 | |
K | 54.14% | 0.54 | 0.54 | 0.54 | |
S | 54.14% | 0.54 | 0.54 | 0.54 | |
Decision Tree | M | 91.70% | 0.92 | 0.92 | 0.92 |
SD | 91.68% | 0.92 | 0.92 | 0.92 | |
SR | 89.98% | 0.9 | 0.9 | 0.9 | |
P | 95.83% | 0.96 | 0.96 | 0.96 | |
K | 90.04% | 0.9 | 0.9 | 0.9 | |
S | 91.68% | 0.92 | 0.92 | 0.92 | |
Linear Discriminant Analysis | M | 80.36% | 0.81 | 0.8 | 0.8 |
SD | 80.36% | 0.81 | 0.8 | 0.8 | |
SR | 80.36% | 0.81 | 0.8 | 0.8 | |
P | 80.36% | 0.81 | 0.8 | 0.8 | |
K | 80.36% | 0.81 | 0.8 | 0.8 | |
S | 80.36% | 0.81 | 0.8 | 0.8 | |
Ada Boost Classifier | M | 89.86% | 0.9 | 0.9 | 0.9 |
SD | 89.86% | 0.9 | 0.9 | 0.9 | |
SR | 89.86% | 0.9 | 0.9 | 0.9 | |
P | 89.86% | 0.9 | 0.9 | 0.9 | |
K | 89.86% | 0.9 | 0.9 | 0.9 | |
S | 89.86% | 0.9 | 0.9 | 0.9 | |
Quadratic Discriminant Analysis | M | 72.78% | 0.73 | 0.73 | 0.73 |
SD | 72.78% | 0.73 | 0.73 | 0.73 | |
SR | 72.78% | 0.73 | 0.73 | 0.73 | |
P | 72.78% | 0.73 | 0.73 | 0.73 | |
K | 72.78% | 0.73 | 0.73 | 0.73 | |
S | 72.78% | 0.73 | 0.73 | 0.73 |
Classifiers | Features | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|---|
Logistic regression | SD, M | 82.39% | 0.82 | 0.82 | 0.82 |
M, SD, SR | 72.84% | 0.73 | 0.73 | 0.73 | |
M, SD, SR, P | 74.997 | 0.75 | 0.75 | 0.75 | |
M, SD, SR, K | 76.96% | 0.77 | 0.77 | 0.77 | |
M, SD, SR, K, S | 76.96% | 0.77 | 0.77 | 0.77 | |
Random Forest | M, SD | 92.05% | 0.92 | 0.92 | 0.92 |
M, SD, SR | 91.06% | 0.92 | 0.91 | 0.91 | |
M, SD, SR, P | 91.96% | 0.93 | 0.92 | 0.92 | |
M, SD, SR, P, K | 90.04% | 0.91 | 0.9 | 0.9 | |
M, SD, SR, P, K, S | 90.28% | 0.91 | 0.9 | 0.9 | |
KNN | M, SD | 75.96% | 0.76 | 0.76 | 0.76 |
M, SD, SR | 75.71% | 0.76 | 0.76 | 0.76 | |
M, SD, SR, P | 75.71% | 0.76 | 0.76 | 0.76 | |
M, SD, SR, P, K | 75.70% | 0.76 | 0.76 | 0.76 | |
M, SD, SR, P, K, S | 75.70% | 0.76 | 0.76 | 0.76 | |
Naie Bayes | M, SD | 57.352 | 0.57 | 0.57 | 0.57 |
M, SD, SR | 59.17% | 0.59 | 0.59 | 0.59 | |
M, SD, SR, P | 56.19% | 0.56 | 0.56 | 0.56 | |
M, SD, SR, P, K | 56.991% | 0.57 | 0.57 | 0.57 | |
M, SD, SR, P, K, S | 55.601% | 0.56 | 0.56 | 0.56 | |
Decision Tree | M, SD | 89.82% | 0.9 | 0.9 | 0.9 |
M, SD, SR | 89.92% | 0.9 | 0.9 | 0.9 | |
M, SD, SR, P | 89.93% | 0.88 | 0.88 | 0.88 | |
M, SD, SR, P, K | 91.93% | 0.92 | 0.92 | 0.92 | |
M, SD, SR, P, K, S | 91.47% | 0.92 | 0.92 | 0.92 | |
Linear Discriminant Analysis | M, SD | 80.36% | 0.81 | 0.8 | 0.8 |
M, SD, SR | 80.36% | 0.81 | 0.8 | 0.8 | |
M, SD, SR, P | 80.13% | 0.8 | 0.8 | 0.8 | |
M, SD, SR, P, K | 80.13% | 0.8 | 0.8 | 0.8 | |
M, SD, SR, P, K, S | 79.78% | 0.8 | 0.8 | 0.8 | |
Ada Boost Classifier | M, SD | 82.88% | 0.83 | 0.83 | 0.83 |
M, SD, SR | 82.98% | 0.83 | 0.83 | 0.83 | |
M, SD, SR, P | 75.67% | 0.76 | 0.76 | 0.76 | |
M, SD, SR, P, K | 75.67% | 0.76 | 0.76 | 0.76 | |
M, SD, SR, P, K, S | 80.40% | 0.8 | 0.8 | 0.8 | |
Quadratic Discriminant Analysis | M, SD | 66.79% | 0.67 | 0.67 | 0.67 |
M, SD, SR | 66.65% | 0.66 | 0.66 | 0.66 | |
M, SD, SR, P | 68.78% | 0.69 | 0.69 | 0.69 | |
M, SD, SR, P, K | 70.09% | 0.7 | 0.7 | 0.7 | |
M, SD, SR, P, K, S | 74.37% | 0.75 | 0.74 | 0.74 |
Confusion Matrix | TP | FP | TN | FN | TPR | TNR |
---|---|---|---|---|---|---|
Decision Tree (SD) | 11,684 | 618 | 11,409 | 391 | 0.96 | 0.94 |
Decision Tree (M, SD, SR, P, K, S) | 11,746 | 1618 | 10,409 | 329 | 0.97 | 0.87 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liaqat, S.; Dashtipour, K.; Arshad, K.; Ramzan, N. Non Invasive Skin Hydration Level Detection Using Machine Learning. Electronics 2020, 9, 1086. https://doi.org/10.3390/electronics9071086
Liaqat S, Dashtipour K, Arshad K, Ramzan N. Non Invasive Skin Hydration Level Detection Using Machine Learning. Electronics. 2020; 9(7):1086. https://doi.org/10.3390/electronics9071086
Chicago/Turabian StyleLiaqat, Sidrah, Kia Dashtipour, Kamran Arshad, and Naeem Ramzan. 2020. "Non Invasive Skin Hydration Level Detection Using Machine Learning" Electronics 9, no. 7: 1086. https://doi.org/10.3390/electronics9071086
APA StyleLiaqat, S., Dashtipour, K., Arshad, K., & Ramzan, N. (2020). Non Invasive Skin Hydration Level Detection Using Machine Learning. Electronics, 9(7), 1086. https://doi.org/10.3390/electronics9071086