Author Contributions
Conceptualization, H.L.; methodology, M.C. and S.H.; software, M.C.; validation, M.C., S.H. and H.L.; formal analysis, M.C.; investigation, H.L.; resources, M.C.; data curation, M.C and S.H.; writing original draft preparation, M.C.; writing—review and editing, H.L.; visualization, M.C.; supervision, H.L.; project administration, H.L; funding acquisition, H.L. All authors have read and agreed to the published version of the manuscript.
Figure 1.
The correlation analysis result.
Figure 1.
The correlation analysis result.
Figure 2.
Structure of the RNN model.
Figure 2.
Structure of the RNN model.
Figure 3.
Structure of the LSTM model.
Figure 3.
Structure of the LSTM model.
Figure 4.
Structure of the GRU model.
Figure 4.
Structure of the GRU model.
Figure 5.
A comparison graph of actual and predicted values for NO2, SO2, O3, and CO. (a) Predicted and actual value of NO2; (b) predicted and actual values of SO2; (c) predicted and actual values of O3; (d) predicted and actual values of CO.
Figure 5.
A comparison graph of actual and predicted values for NO2, SO2, O3, and CO. (a) Predicted and actual value of NO2; (b) predicted and actual values of SO2; (c) predicted and actual values of O3; (d) predicted and actual values of CO.
Figure 6.
A comparison graph of actual and predicted values for atmospheric pressure, temperature, wind speed, wind direction, and humidity. (a) Predicted and actual values of humidity; (b) predicted and actual values of wind speed, (c) predicted and actual values of atmospheric pressure; (d) predicted and actual values of wind direction; (e) predicted and actual values of temperature.
Figure 6.
A comparison graph of actual and predicted values for atmospheric pressure, temperature, wind speed, wind direction, and humidity. (a) Predicted and actual values of humidity; (b) predicted and actual values of wind speed, (c) predicted and actual values of atmospheric pressure; (d) predicted and actual values of wind direction; (e) predicted and actual values of temperature.
Figure 7.
A graph of the actual and predicted values of PM10 and PM2.5. (a) Predicted and actual values of PM2.5; (b) predicted and actual values of PM10.
Figure 7.
A graph of the actual and predicted values of PM10 and PM2.5. (a) Predicted and actual values of PM2.5; (b) predicted and actual values of PM10.
Figure 8.
A graph of the actual and predicted values of PM10 and PM2.5 using weather data with SO2. (a) The predicted and actual values of PM2.5; (b) predicted and actual values of PM10.
Figure 8.
A graph of the actual and predicted values of PM10 and PM2.5 using weather data with SO2. (a) The predicted and actual values of PM2.5; (b) predicted and actual values of PM10.
Figure 9.
A graph of the actual and predicted values of PM10 and PM2.5 using weather data with CO. (a) Predicted and actual values of PM2.5; (b) predicted and actual values of PM10.
Figure 9.
A graph of the actual and predicted values of PM10 and PM2.5 using weather data with CO. (a) Predicted and actual values of PM2.5; (b) predicted and actual values of PM10.
Figure 10.
A graph of the actual and predicted values of PM10 and PM2.5 using weather data with NO2: (a) predicted and actual values of PM2.5, and (b) predicted and actual values of PM10.
Figure 10.
A graph of the actual and predicted values of PM10 and PM2.5 using weather data with NO2: (a) predicted and actual values of PM2.5, and (b) predicted and actual values of PM10.
Figure 11.
A graph of the actual and predicted values of PM10 and PM2.5 using weather data with O3. (a) predicted and actual values of PM2.5; (b) predicted and actual values of PM10.
Figure 11.
A graph of the actual and predicted values of PM10 and PM2.5 using weather data with O3. (a) predicted and actual values of PM2.5; (b) predicted and actual values of PM10.
Figure 12.
A graph of the actual and predicted values of PM10 and PM2.5 using weather data with atmospheric pressure. (a) Predicted and actual values of PM2.5; (b) predicted and actual values of PM10.
Figure 12.
A graph of the actual and predicted values of PM10 and PM2.5 using weather data with atmospheric pressure. (a) Predicted and actual values of PM2.5; (b) predicted and actual values of PM10.
Figure 13.
This figure is a graph of the actual and predicted values of PM10 and PM2.5 using weather data with wind_x and wind_y: (a) predicted and actual values of PM2.5, and (b) predicted and actual values of PM10.
Figure 13.
This figure is a graph of the actual and predicted values of PM10 and PM2.5 using weather data with wind_x and wind_y: (a) predicted and actual values of PM2.5, and (b) predicted and actual values of PM10.
Figure 14.
A graph of the actual and predicted values of PM10 and PM2.5. (a) Predicted and actual values of PM2.5; (b) predicted and actual values of PM10.
Figure 14.
A graph of the actual and predicted values of PM10 and PM2.5. (a) Predicted and actual values of PM2.5; (b) predicted and actual values of PM10.
Figure 15.
A graph of the actual and predicted values of PM10 and PM2.5. (a) Predicted and actual values of PM2.5; (b) predicted and actual values of PM10.
Figure 15.
A graph of the actual and predicted values of PM10 and PM2.5. (a) Predicted and actual values of PM2.5; (b) predicted and actual values of PM10.
Figure 16.
A graph of actual and predicted values of PM10 and PM2.5 using training data. (a) Predicted and actual values of PM2.5; (b) predicted and actual values of PM10.
Figure 16.
A graph of actual and predicted values of PM10 and PM2.5 using training data. (a) Predicted and actual values of PM2.5; (b) predicted and actual values of PM10.
Figure 17.
A graph of actual and predicted values of PM10 and PM2.5 using test data: (a) predicted and actual values of PM2.5, (b) predicted and actual values of PM10.
Figure 17.
A graph of actual and predicted values of PM10 and PM2.5 using test data: (a) predicted and actual values of PM2.5, (b) predicted and actual values of PM10.
Table 1.
Air Quality Standard.
Table 1.
Air Quality Standard.
Countries | 1hour Average on PM10 | 24hour Average on PM10 | An annual Average on PM10 | 24hour Average on PM2.5 | An Annual Average on PM2.5 |
---|
The Korea | - | 100 μg/m3 | 50 μg/m3 | 35 μg/m3 | 15 μg/m3 |
USA | - | 150 μg/m3 | - | 35 μg/m3 | 15 μg/m3 |
Japan | 200 μg/m3 | 100 μg/m3 | - | 35 μg/m3 | 15 μg/m3 |
China | - | 150 μg/m3 | 70 μg/m3 | 75 μg/m3 | 35 μg/m3 |
WHO | - | 50 μg/m3 | 20 μg/m3 | 25 μg/m3 | 10 μg/m3 |
EU | - | 50 μg/m3 | 40 μg/m3 | - | 25 μg/m3 |
Table 2.
Stages of PM in the Korea.
Table 2.
Stages of PM in the Korea.
Status | PM10 | PM2.5 |
---|
Good | 0 ~ 30 μg/m3 | 0 ~ 15 μg/m3 |
Normal | 31 ~ 80 μg/m3 | 16 ~ 35 μg/m3 |
Bad | 81 ~ 150 μg/m3 | 36 ~ 75 μg/m3 |
Very bad | 150 μg/m3 over | 76 μg/m3 over |
Table 3.
The number of air pollution stations in each city and province.
Table 3.
The number of air pollution stations in each city and province.
City Name | The Number of Stations | Province Name | The Number of Stations |
---|
Seoul | 40 | Gyeonggi-do | 108 |
Incheon | 25 | Gangwon-do | 25 |
Daejeon | 12 | Chungcheongsam-do | 34 |
Daegu | 15 | Chungcheongbuk-do | 29 |
Ulsan | 17 | Gyeongsangnuk-do | 42 |
Busan | 29 | Gyeongsangnam-do | 38 |
Gwangju | 11 | Jeollabuk-do | 32 |
Sejong | 4 | Jeollanam-do | 38 |
| | Jeju Island | 88 |
Table 4.
The number of weather stations in each city and province.
Table 4.
The number of weather stations in each city and province.
City name | The Number of Stations | Province Name | The Number of Stations |
---|
Seoul | 2 | Gyeonggi-do | 5 |
Incheon | 3 | Gangwon-do | 15 |
Daejeon | 1 | Chungcheongsam-do | 6 |
Daegu | 2 | Chungcheongbuk-do | 5 |
Ulsan | 1 | Gyeongsangnuk-do | 14 |
Busan | 1 | Gyeongsangnam-do | 10 |
Gwangju | 1 | Jeollabuk-do | 16 |
Sejong | 1 | Jeollanam-do | 14 |
| | Jeju Island | 4 |
Table 5.
Input data.
Variable | Unit | Range | Variable | Unit | Range |
---|
Address1 | Integer | ≥ 0 | PM10 | | 0–400 |
Address2 | Integer | ≥ 0 | temperature | | −25–45 |
Address3 | Integer | ≥ 0 | precipitation | mm | ≥ 0 |
Full Address | Integer | ≥ 0 | wind_x | Float | −12–12 |
Solar Terms | Integer | 0–23 | wind_y | Float | −12–12 |
SO2 | ppm | ≥ 0 | humidity | % | 0–100 |
CO | ppm | ≥ 0 | atmospheric pressure | hPa | ≥ 0 |
O3 | ppm | ≥ 0 | snowfall | cm | ≥0 |
NO2 | ppm | ≥ 0 | IsRain | Integer | 0 or 1 |
PM2.5 | | 0–180 | IsSnow | Integer | 0 or 1 |
Table 6.
Variables of the LSTM model.
Table 6.
Variables of the LSTM model.
Variable | Description |
---|
| Logistic sigmoid function |
t | current state. t - 1 means the previous state. |
i | unit of input gate. means a unit of input gate of the current state. |
f | unit of forget gate. means a unit of forgetting gate of the current state. |
o | unit of output gate. means a unit of output gate of the current state. |
x | Input value. means the input value of the current state. |
b | Bias value. means bias of forget gate. |
W | Weight matrix. means weight matrix of forget gate. |
c | Cell for long term memory. means cell for long term memory of the current state. |
h | hidden state for short term memory means hidden state for short term memory of the current state. |
Table 7.
Variables of the GRU model.
Table 7.
Variables of the GRU model.
Variable | Description |
---|
| Logistic sigmoid function |
t | current state. t - 1 means the previous state. |
j | Index of hidden unit |
r | Unit of reset gate. means unit of reset gate of current state when calculating the j-th hidden unit. It decides whether the previous hidden state is ignored. |
z | Unit of update gate. means a unit of update gate of current state when calculating the j-th hidden unit. It selects whether the hidden state is to be updated with a new hidden state. |
U | Weight matrix. means weight matrix of reset gate. |
W | Weight matrix. means weight matrix of the reset gate. |
| A new hidden state. means a new hidden state of current state when calculating the j-th hidden unit. |
| The hidden state. means the hidden state of the current state when calculating the j-th hidden unit. The output is the hidden state. |
Table 8.
Variables.
Variable | Description |
---|
n | The number of data |
i | The index of elements |
. | Real value |
| Predicted value |
Table 9.
Results of MAE and RMSE of air quality data.
Table 9.
Results of MAE and RMSE of air quality data.
Evaluation Method | SO2 | CO | NO2 | O3 |
---|
MAE | 0.0019767759774657213 | 0.13297266375870512 | 0.004597223937342291 | 0.00520195667252871 |
RMSE | 0.002783199108899503 | 0.19131779740725147 | 0.006546173996365833 | 0.007070109851593688 |
Table 10.
Results of MAE and RMSE of air quality data.
Table 10.
Results of MAE and RMSE of air quality data.
Evaluation Method | Atmospheric Pressure | Temperature | Wind Speed | Wind Direction | Humidity |
---|
MAE | 9.709005228526323 | 2.452505929222188 | 0.9497748647253894 | 69.97904782589953 | 4.971006381407262 |
RMSE | 12.06379300207477 | 3.124994324296823 | 1.1238794798143996 | 94.41206318590864 | 6.291656963869701 |
Table 11.
Evaluation of the predicted PM using weather data.
Table 11.
Evaluation of the predicted PM using weather data.
PM2.5 RMSE | PM2.5 MAE | PM10 RMSE | PM10 MAE |
---|
11.424509950830299 | 7.386990585039382 | 7.810868049063216 | 5.192483483811323 |
Table 12.
Evaluation of the predicted PM using weather data with SO2.
Table 12.
Evaluation of the predicted PM using weather data with SO2.
PM2.5 RMSE. | PM2.5 MAE | PM10 RMSE | PM10 MAE |
---|
11.150591658178262 | 7.212869946039611 | 7.266045101108083 | 5.150813651956774 |
Table 13.
Evaluation of the predicted PM using weather data with CO.
Table 13.
Evaluation of the predicted PM using weather data with CO.
PM2.5 RMSE | PM2.5 MAE | PM10 RMSE | PM10 MAE |
---|
10.876065670272803 | 6.952868615163375 | 6.646710365161875 | 4.482592977233096 |
Table 14.
Evaluation of the predicted PM using weather data with NO2.
Table 14.
Evaluation of the predicted PM using weather data with NO2.
PM2.5 RMSE | PM2.5 MAE | PM10 RMSE | PM10 MAE |
---|
10.997660334582932 | 7.11836606573322 | 6.981789199218698 | 4.811013752937683 |
Table 15.
Evaluation of the predicted PM using weather data with O3.
Table 15.
Evaluation of the predicted PM using weather data with O3.
PM2.5 RMSE | PM2.5 MAE | PM10 RMSE | PM10 MAE |
---|
11.609210552459992 | 7.574959231025852 | 6.802652715247799 | 4.745732709395488 |
Table 16.
Evaluation of the predicted PM using weather data with atmospheric pressure.
Table 16.
Evaluation of the predicted PM using weather data with atmospheric pressure.
PM2.5 RMSE | PM2.5 MAE | PM10 RMSE | PM10 MAE |
---|
11.418551994654374 | 7.6519155502608305 | 7.099408392719633 | 5.154189156530305 |
Table 17.
Evaluation of the predicted PM using weather data with wind_x and wind_y.
Table 17.
Evaluation of the predicted PM using weather data with wind_x and wind_y.
PM2.5 RMSE | PM2.5 MAE | PM10 RMSE | PM10 MAE |
---|
11.2317932705464 | 7.316346260707396 | 6.877921416196969 | 4.751750217462248 |
Table 18.
Evaluation of the predicted PM using weather data with the address format.
Table 18.
Evaluation of the predicted PM using weather data with the address format.
PM2.5 RMSE | PM2.5 MAE | PM10 RMSE | PM10 MAE |
---|
11.188162098223694 | 7.312010079856926 | 7.047761546009768 | 4.76084091141095 |
Table 19.
Evaluation of the predicted PM using weather data with 24 solar terms.
Table 19.
Evaluation of the predicted PM using weather data with 24 solar terms.
PM2.5 RMSE | PM2.5 MAE | PM10 RMSE | PM10 MAE |
---|
11.378345949349278 | 7.2755643802599455 | 6.75767487545403 | 4.663318307737441 |
Table 20.
Performance evaluation results according to the sequence length.
Table 20.
Performance evaluation results according to the sequence length.
Sequence Length | PM2.5 MAE | PM2.5 RMSE | PM10 MAE | PM10 RMSE |
---|
1 Day | 6.8723638736498796 | 10.872907681846236 | 4.889641018450285 | 7.023668509637945 |
2 Days | 7.07283570669722 | 10.922789343087404 | 4.752256456662703 | 6.864557932586567 |
3 Days | 8.010269844202515 | 11.565469091024756 | 5.419169106578719 | 7.81227016304491 |
4 Days | 7.193962617691575 | 11.139297312830582 | 5.014263292572295 | 7.125953867868762 |
5 Days | 7.0712063786053045 | 10.885098257926721 | 4.683081878761333 | 6.8245960495513325 |
6 Days | 6.950957594294552 | 10.877398546601832 | 4.8897148765323655 | 7.075202116985077 |
7 Days | 6.748574488524663 | 10.666811784105274 | 4.576222601673498 | 6.706854128280908 |
8 Days | 8.311487394638375 | 12.524398614693366 | 6.037762553211165 | 9.065500584144592 |
9 Days | 7.45985392084471 | 11.087943511761466 | 4.869146536925853 | 6.957451893754408 |
10 Days | 7.068727429495773 | 10.9847680613304 | 5.32557239845155 | 8.05212499374417 |
11 Days | 7.486351519908187 | 11.437778947196147 | 4.839375773430798 | 7.135375508314753 |
12 Days | 7.060299407943606 | 11.125659651922488 | 6.116040476671633 | 9.085695877353128 |
13 Days | 7.35881634959586 | 11.374645196090356 | 6.7099764973762905 | 10.786191153184818 |
14 Days | 7.057825475352884 | 10.854893642056501 | 4.967073756780628 | 6.993131797131667 |
Table 21.
Performance evaluation results according to the batch size.
Table 21.
Performance evaluation results according to the batch size.
Batch Size | PM2.5 MAE | PM2.5 RMSE | PM10 MAE | PM10 RMSE |
---|
64 | 6.8723638736498796 | 10.872907681846236 | 4.889641018450285 | 7.023668509637945 |
96 | 6.915248555917008 | 10.872228585931706 | 4.5699693535437085 | 6.6472971974889905 |
128 | 7.290778784389358 | 11.358100746070686 | 5.090586659374237 | 7.652284409114551 |
160 | 7.195339101694315 | 10.9563082562599 | 4.820049060024904 | 6.8492290512882485 |
192 | 7.0080317971032 | 10.925634792582278 | 5.250878940846936 | 7.90720787936262 |
256 | 7.627937784358025 | 11.255332451776745 | 4.7917052769598865 | 6.9397277896506875 |
512 | 6.833282805161927 | 10.740158388237752 | 4.691628873916771 | 6.85637822970579 |
Table 22.
Performance evaluation result according to each model.
Table 22.
Performance evaluation result according to each model.
Batch Size | PM2.5 MAE | PM2.5 RMSE | PM10 MAE | PM10 RMSE |
---|
CNN | 10.21723294956235 | 13.501415151238904 | 9.280525187180793 | 13.293511747301356 |
LSTM | 7.201965056645242 | 10.964201214885806 | 4.672849256285137 | 6.92387169617792 |
GRU | 7.796999000699376 | 11.986331910014759 | 6.552875746664709 | 9.338689775858853 |