Effect of Temperature on Electromagnetic Performance of Active Phased Array Antenna
Abstract
:1. Introduction
2. Temperature and Electromagnetic Performance Coupling Model for APAA
3. Verification of the Coupling Model
4. Analysis and Discussion of Effect of Temperature on Electromagnetic Performance of APAA
4.1. Analysis of the Effect of Varying the Uniformly Distributed Temperature Field
4.2. Analysis of the Effect of Different Temperature Gradient Fields
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Catalani, A.; Toso, G.; Angeletti, P.; Albertini, M.; Russo, P. Development of enabling technologies for Ku-band airborne SATCOM phased-arrays. Electronics 2020, 9, 488. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; Sung, J.B.; Torre, A. In-Orbit Antenna Pattern Extraction Method for Active Phased-Array SAR Antennas. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 317–320. [Google Scholar] [CrossRef]
- Haupt, R.L.; Rahmat-Samii, Y. Antenna array developments: A perspective on the past, present and future. IEEE Antennas Propag. Mag. 2015, 64, 86–96. [Google Scholar] [CrossRef]
- Zang, J.W.; Alvarez-Melcon, A.; Gomez-Diaz, J.S. Nonreciprocal phased array antennas. Phys. Rev. Appl. 2019, 12, 054008. [Google Scholar] [CrossRef] [Green Version]
- Taravati, S.; Eleftheriades, G.V. Full-Duplex Nonreciprocal-Beam-Steering Metasurfaces Comprising Time-Modulated Twin Meta-Atoms. arXiv 2019, arXiv:1911.04033. [Google Scholar]
- Karimian, R.; Ahmadi, S.; Zaghloul, M.; Taravati, S. Nonreciprocal-Beam Phased-Array Antennas. arXiv 2020, arXiv:2006.04211. [Google Scholar]
- Brookner, E.; Howell, J.M. Right way to calculate reflector and active-phased-array antenna system noise temperature taking into account antenna mismatch. In Proceedings of the IEEE International Symposium on Phased Array Systems and Technology, Boston, MA, USA, 14–17 October 2003; pp. 130–135. [Google Scholar]
- Brookner, E. Active electronically scanned array (AESA) system noise temperature. In Proceedings of the 2013 IEEE International Symposium on Phased Array Systems and Technology, Waltham, MA, USA, 15–18 October 2013; pp. 760–767. [Google Scholar]
- Rummel, K.A.; Schaefer, G.; Chen, K.W.; Allen, B.H.; Weissman, D.J. Remote Cooling of a Phased Array Antenna. U.S. Patent Application No. 11,865,475, 4 February 2009. [Google Scholar]
- Sobhan, C.B.; Garimella, S.V. A comparative analysis of studies on heat transfer and fluid flow in microchannels. Microscale Thermophys. Eng. 2001, 24, 293–311. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, M.; Morikawa, E.; Koyama, Y.; Suzuki, R.; Yasuda, Y. Development of thermal control for phased array antenna. In Proceedings of the 21st International Communications Satellite Systems Conference and Exhibit, Yokohama, Japan, 17–19 April 2003. AIAA-2003-2226. [Google Scholar] [CrossRef]
- Zhang, J.; Li, R.; Xu, X.; Wu, C. Design of a cooling system for high density integrated phased array antenna test. In Proceedings of the 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), Xian, China, 16–19 October 2017; pp. 1–3. [Google Scholar]
- Kumamoto, T.; Kayano, H.; Shiokawa, N.; Nakayama, K.; Kawaguchi, T.; Shinonaga, M. High-sensitivity receiving sub-array module with HTS filters for an active phased array antenna. In Proceedings of the 2013 IEEE International Symposium on Phased Array Systems and Technology, Waltham, MA, USA, 15–18 October 2013; pp. 341–345. [Google Scholar]
- Kayano, H.; Kumamoto, T.; Shiokawa, N.; Kawaguchi, T.; Nakayama, K.; Shinonaga, M. 8 Elements phased array antenna using superconducting receiving module. In Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, The Netherlands, 6–11 April 2014; pp. 1852–1853. [Google Scholar]
- Iijima, K.; Kumamoto, T.; Kayano, H.; Shiokawa, N.; Kawaguchi, T.; Shinonaga, M. Superconducting sub-array module as T/R module for X-band active phased array antenna. In Proceedings of the 2015 IEEE Radar Conference (RadarCon), Arlington, VA, USA, 10–15 May 2015; pp. 214–219. [Google Scholar]
- Huang, D.; Li, T. Design of RF temperature measurement system of delay linear SAW temperature sensor based on FPGA. In Proceedings of the 2020 International Conference on Computer Engineering and Application (ICCEA), Guangzhou, China, 18–20 March 2020; pp. 520–524. [Google Scholar]
- Moon, S.; Yun, S.; Yom, I.; Lee, H.L. Phased Array Shaped-Beam Satellite Antenna With Boosted-Beam Control. IEEE Trans. Antennas Propag. 2019, 67, 7633–7636. [Google Scholar] [CrossRef]
- Zagrajek, P.; Ganichev, S.; Danilov, S.; Marczewski, J.; Zaborowski, M.; Kolacinski, C.; Obrebski, D.; Kopyt, P.; But, D.; Knap, W. Time Resolution and Power Dependence of Transistor Based Terahertz Detectors. In Proceedings of the 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 1–6 September 2019; pp. 1–2. [Google Scholar]
- Wali, R.; Osman, L.; Razban, T.; Mahé, Y. Tunable Power Divider with Varactors Based Schiffman Phase Shifters for Antenna Arrays Beam Steering. In Proceedings of the 2017 Mediterranean Microwave Symposium (MMS), Marseille, France, 28–30 November 2017; pp. 1–4. [Google Scholar]
- Zhong, L.; Fu, G.; Lu, J. A research for influence of temperature on T/R module in radar. In Proceedings of the IEEE Prognostics and System Health Management Conference, Beijing, China, 25–29 May 2015; pp. 1–9. [Google Scholar] [CrossRef]
- Temir, K.; Akyüz, M.S.; Alp, Y.K. Consideration of environmental and functional factors in calibration of antenna integrated active phased array transmitters. In Proceedings of the 2016 IEEE International Symposium on Phased Array Systems and Technology (PAST), Waltham, MA, USA, 18–21 October 2016; pp. 1–5. [Google Scholar]
- Medina, R.H.; Salazar, J.L.; Knapp, E.J.; McLaughlin, D.J. Calibration and validation of the CASA phased array antenna. In Proceedings of the 2012 9th European Radar Conference, Amsterdam, The Netherlands, 31 October–2 November 2012; pp. 614–617. [Google Scholar]
- Wang, C.S.; Duan, B.Y.; Zhang, F.S.; Zhu, M.B. Coupled structural-electromagnetic-thermal modelling and analysis of active phased array antennas. IET Microw. Antennas Propag. 2010, 4, 247–257. [Google Scholar] [CrossRef]
- Wang, V.; Wang, C.; Gao, W.; Xu, Q.; Yuan, S.; Li, H.; Ying, K. Compensation Method for Distorted Active Phased Array Antennas in Condition of Quantization Errors Based on Structural-Electromagnetic Coupling. In Proceedings of the 12th European Conference on Antennas and Propagation, London, UK, 7–13 April 2018. [Google Scholar] [CrossRef]
- Xueming, J.; Manqing, W.; Jianmei, T. Experimental study on a digital T/R module for phased array radar. In Proceedings of the 2001 CIE International Conference on Radar Proceedings, Beijing, China, 15–18 October 2001; pp. 898–902. [Google Scholar] [CrossRef]
Temperature Variation (°C) | Normalized Amplitude Error | Gain-loss Increase (dB) | |
---|---|---|---|
Corresponding Variation | For Every 1 °C Increase | ||
−80~−40 | 0.023~0.876 | −31.33 | −2.31 (maximum) |
−40~25 | 0.876~0.990 | −1.15 | −0.02 |
25~85 | 0.901~0.990 | 0.9 | 0.015 |
85~100 | 0.048~0.901 | 25.41 | 3.55 (maximum) |
Temperature (°C) | Excitation Current Error | Gain-loss Variation (dB) | |||
---|---|---|---|---|---|
Gradient | Lowest Range | Normalized Amplitude Error | Phase Error (°) | Variation Range | For Gradient Increase by 1 °C |
0~5 | 25~80 | 0.901~0.990 | 2.308~2.90 | 0.009~0.837 | 0.01 |
80~85 | 0.479~0.901 | 2.90 | 0.837~2.983 | 1.05 (maximum) | |
5~10 | 25~77 | 0.740~0.990 | 2.3~2.9 | 0.008~1.098 | 0.01 |
77~85 | 0.204~0.926 | 2.90 | 1.098~5.738 | 1.21 (maximum) | |
10~15 | 25~72 | 0.741~0.926 | 2.3~2.9 | 0.039~1.562 | 0.01 |
72~85 | 0.048~0.907 | 2.90 | 1.562~8.535 | 1.34 (maximum) |
Temperature (°C) | Excitation Current Error | Gain-Loss Variation (dB) | |||
---|---|---|---|---|---|
Gradient | Lowest Range | Normalized Amplitude Error | Phase Error (°) | Variation Range | for Gradient Increase by 1 °C |
0~5 | −80~−40 | 0.023~0.907 | 4.089~4.805 | 1.101~27.350 | −1.52 (maximum) |
−40~25 | 0.876~0.99 | 2.3~4.200 | 0.003~1.101 | −0.01 | |
25~70 | 0.919~0.99 | 2.308~2.9 | 0.003~0.856 | 0.01 | |
70~85 | 0.479~0.928 | 2.9 | 0.856~3.096 | 0.91 (maximum) | |
5~10 | −80~−40 | 0.064~0.897 | 3.970~4.757 | 1.051~23.68 | −1.15 (maximum) |
−40~25 | 0.886~0.991 | 2.3~4.089 | 0.005~1.051 | −0.01 | |
25~70 | 0.910~0.990 | 2.32~2.9 | 0.005~1.318 | 0.01 | |
70~85 | 0.204~0.937 | 2.75~2.9 | 1.318~5.766 | 1.07 (maximum) | |
10~15 | −80~−40 | 0.114~0.907 | 3.843~4.701 | 0.999~20.710 | −0.95 (maximum) |
−40~25 | 0.897~0.982 | 2.3~3.97 | 0.016~0.999 | −0.01 | |
25~70 | 0.901~0.991 | 2.3~2.9 | 0.016~1.528 | 0.01 | |
70~85 | 0.048~0.901 | 2.9 | 1.528~8.324 | 1.19 (maximum) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, C.; Lian, P.; Xue, S.; Liu, J.; Gao, W.; Shi, Y.; Wang, Z.; Yu, K.; Peng, X.; et al. Effect of Temperature on Electromagnetic Performance of Active Phased Array Antenna. Electronics 2020, 9, 1211. https://doi.org/10.3390/electronics9081211
Wang Y, Wang C, Lian P, Xue S, Liu J, Gao W, Shi Y, Wang Z, Yu K, Peng X, et al. Effect of Temperature on Electromagnetic Performance of Active Phased Array Antenna. Electronics. 2020; 9(8):1211. https://doi.org/10.3390/electronics9081211
Chicago/Turabian StyleWang, Yan, Congsi Wang, Peiyuan Lian, Song Xue, Jing Liu, Wei Gao, Yu Shi, Zhihai Wang, Kunpeng Yu, Xuelin Peng, and et al. 2020. "Effect of Temperature on Electromagnetic Performance of Active Phased Array Antenna" Electronics 9, no. 8: 1211. https://doi.org/10.3390/electronics9081211
APA StyleWang, Y., Wang, C., Lian, P., Xue, S., Liu, J., Gao, W., Shi, Y., Wang, Z., Yu, K., Peng, X., Du, B., & Xiao, S. (2020). Effect of Temperature on Electromagnetic Performance of Active Phased Array Antenna. Electronics, 9(8), 1211. https://doi.org/10.3390/electronics9081211