Non-Orthogonal Multiple Access in Multiuser MIMO Configurations via Code Reuse and Principal Component Analysis
Abstract
:1. Introduction
2. Multiuser MIMO Configurations
Algorithm 1 Transmission matrix formulation for multiuser (MU) frequency selective fading environments. |
Step 1:i ←1, tk,i ← , pk,i ← , ε = 10−3 |
Step 2:Ak,i ← |
Step 3: tk,i+1 ← X(λm(Ak,i)) and pk,i+1← |
Step 4: If the procedure terminates else go to step 2 |
3. Code Reuse via Principal Component Analysis
Algorithm 2 Non-orthogonal multiple access (NOMA) user grouping and decoding algorithm. |
Step 1: Set ng ← 1, , ← { } |
Step 2: while (ng < NGm) |
, |
ng ← ng + 1,← { } |
end |
Step 3: SIC |
ng ← 1 |
while (ng < NGm) |
{uo, u1} ← , j← 1 |
Decode the sth symbol of user uo: |
while (j < L) |
j ← j + 1 |
end |
ng ← ng + 1 |
end |
4. Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.K.; Zhang, J.C. What Will 5G Be? IEEE J. Sel. Areas Commun. 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
- Gupta, A.; Jha, R.K. A Survey of 5G Network: Architecture and Emerging Technologies. IEEE Access 2015, 3, 1206–1232. [Google Scholar] [CrossRef]
- Trakadas, P.T.; Nomikos, N.; Michailidis, E.T.; Zahariadis, T.V.; Facca, F.M.; Breitgand, D.; Rizou, S.; Masip-Bruin, X.; Gkonis, P.K. Hybrid Clouds for Data-Intensive, 5G-Enabled IoT Applications: An Overview, Key Issues and Relevant Architecture. Sensors 2019, 19, 3591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, X.; Tang, C.; Zhang, Z. Accurate Channel Estimation for Millimeter-Wave MIMO Systems. IEEE Trans. Veh. Technol. 2019, 68, 5159–5163. [Google Scholar] [CrossRef]
- Uwaechia, A.N.; Mahyuddin, N.M. A Comprehensive Survey on Millimeter Wave Communications for Fifth-Generation Wireless Networks: Feasibility and Challenges. IEEE Access 2020, 8, 62367–62414. [Google Scholar] [CrossRef]
- Ji, H.; Kim, Y.; Onggosanusi, E.; Nam, Y.; Lee, J.; Zhang, J.; Lee, B.; Lee, K. Overview of Full-Dimension MIMO in LTE-Advanced Pro. IEEE Commun. Mag. 2016, 55, 176–184. [Google Scholar] [CrossRef] [Green Version]
- Mokhtari, Z.; Sabbaghian, M.; Dinis, R. A Survey on Massive MIMO Systems in Presence of Channel and Hardware Impairments. Sensors 2019, 19, 164. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Wang, B.; Ding, Z.; Wang, Z.; Chen, S.; Hanzo, L. A Survey of Non-Orthogonal Multiple Access for 5G. IEEE Commun. Surv. Tutorials 2018, 20, 2294–2323. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Lei, X.; Karagiannidis, G.K.; Schober, R.; Yuan, J.; Bhargava, V.K. A Survey on Non-Orthogonal Multiple Access for 5G Networks: Research Challenges and Future Trends. IEEE J. Sel. Areas Commun. 2017, 35, 2181–2195. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Wang, B.; Yuan, Y.; Han, S.; Chih-Lin, I.; Wang, Z. Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Commun. Mag. 2015, 53, 74–81. [Google Scholar] [CrossRef]
- Zeng, M.; Yadav, A.; Dobre, O.A.; Tsiropoulos, G.I.; Poor, H.V. Capacity Comparison Between MIMO-NOMA and MIMO-OMA With Multiple Users in a Cluster. IEEE J. Sel. Areas Commun. 2017, 35, 2413–2424. [Google Scholar] [CrossRef]
- Hoshyar, R.; Wathan, F.P.; Tafazolli, R. Novel Low-Density Signature for Synchronous CDMA Systems Over AWGN Channel. IEEE Trans. Signal Process. 2008, 56, 1616–1626. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Fan, P.; Poor, H.V. Impact of User Pairing on 5G Nonorthogonal Multiple-Access Downlink Transmissions. IEEE Trans. Veh. Technol. 2016, 65, 6010–6023. [Google Scholar] [CrossRef]
- Saito, Y.; Kishiyama, Y.; Benjebbour, A.; Nakamura, T.; Li, A.; Higuchi, K. Non-Orthogonal Multiple Access (NOMA) for Cellular Future Radio Access. In Proceedings of the 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), Dresden, Germany, 2–5 June 2013; pp. 1–5. [Google Scholar]
- Ding, Z.; Adachi, F.; Poor, H.V. The Application of MIMO to Non-Orthogonal Multiple Access. IEEE Trans. Wirel. Commun. 2015, 15, 537–552. [Google Scholar] [CrossRef] [Green Version]
- Nomikos, N.; Trakadas, P.T.; Hatziefremidis, A.; Voliotis, S. Full-Duplex NOMA Transmission with Single-Antenna Buffer-Aided Relays. Electronics 2019, 8, 1482. [Google Scholar] [CrossRef] [Green Version]
- Nomikos, N.; Michailidis, E.T.; Trakadas, P.; Vouyioukas, D.; Zahariadis, T.; Krikidis, I. Flex-NOMA: Exploiting Buffer-Aided Relay Selection for Massive Connectivity in the 5G Uplink. IEEE Access 2019, 7, 88743–88755. [Google Scholar] [CrossRef]
- Al-Abbasi, Z.Q.; So, D.K.C. User-Pairing Based Non-Orthogonal Multiple Access (NOMA) System. In Proceedings of the 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, 15–18 May 2016; pp. 1–5. [Google Scholar]
- Zhu, L.; Zhang, J.; Xiao, Z.; Cao, X.; Wu, D.O. Optimal User Pairing for Downlink Non-Orthogonal Multiple Access (NOMA). IEEE Wirel. Commun. Lett. 2019, 8, 328–331. [Google Scholar] [CrossRef]
- Liu, F.; Mähönen, P.; Petrova, M. Proportional fairness-based user pairing and power allocation for non-orthogonal multiple access. In Proceedings of the 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong, China, 30 August–2 September 2015; pp. 1127–1131. [Google Scholar]
- Gkonis, P.K.; Kaklamani, D.-T.I.; Venieris, I.S.; Dervos, C.T.; Chryssomallis, M.; Siakavara, K.; Kyriakou, G.A. On the Reduction of Transmission Complexity in MIMO-WCDMA Frequency-Selective Fading Orientations via Eigenvalue Analysis. Electronics 2018, 7, 239. [Google Scholar] [CrossRef] [Green Version]
- Gkonis, P.K.; Tsoulos, G.; Kaklamani, D. Dual code Tx diversity with antenna selection for spatial multiplexing in MIMO-WCDMA networks. IEEE Commun. Lett. 2009, 13, 570–572. [Google Scholar] [CrossRef]
- Holma, H.; Toskala, A. (Eds.) WCDMA for UMTS. Radio Access for Third Generation Mobile Communications, 3rd ed.; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Cai, Y.; Qin, Z.; Cui, F.; Li, G.Y.; McCann, J.A. Modulation and Multiple Access for 5G Networks. IEEE Commun. Surv. Tutor. 2018, 20, 629–646. [Google Scholar] [CrossRef] [Green Version]
- Gkonis, P.K.; Kaklamani, D.-T.I. Reduced Complexity BER Calculations in Large Scale Spatial Multiplexing Multi-User MIMO Orientations in Frequency Selective Fading Environments. Electronics 2019, 8, 727. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Xie, Z.; Fang, Y.; Chen, Z.; Mumtaz, S.; Rodrigues, J.J.P.C. Physical-Layer Network Coding: An Efficient Technique for Wireless Communications. IEEE Netw. 2020, 34, 270–276. [Google Scholar] [CrossRef] [Green Version]
- Battaglioni, M.; Tasdighi, A.; Cancellieri, G.; Chiaraluce, F.; Baldi, M. Design and Analysis of Time-Invariant SC-LDPC Convolutional Codes with Small Constraint Length. IEEE Trans. Commun. 2017, 66, 918–931. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gkonis, P.K.; Trakadas, P.T.; Sarakis, L.E. Non-Orthogonal Multiple Access in Multiuser MIMO Configurations via Code Reuse and Principal Component Analysis. Electronics 2020, 9, 1330. https://doi.org/10.3390/electronics9081330
Gkonis PK, Trakadas PT, Sarakis LE. Non-Orthogonal Multiple Access in Multiuser MIMO Configurations via Code Reuse and Principal Component Analysis. Electronics. 2020; 9(8):1330. https://doi.org/10.3390/electronics9081330
Chicago/Turabian StyleGkonis, Panagiotis K., Panagiotis T. Trakadas, and Lambros E. Sarakis. 2020. "Non-Orthogonal Multiple Access in Multiuser MIMO Configurations via Code Reuse and Principal Component Analysis" Electronics 9, no. 8: 1330. https://doi.org/10.3390/electronics9081330
APA StyleGkonis, P. K., Trakadas, P. T., & Sarakis, L. E. (2020). Non-Orthogonal Multiple Access in Multiuser MIMO Configurations via Code Reuse and Principal Component Analysis. Electronics, 9(8), 1330. https://doi.org/10.3390/electronics9081330