The Impact of Demographic, Clinical Characteristics and the Various COVID-19 Variant Types on All-Cause Mortality: A Case-Series Retrospective Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Data Collection
2.2. Laboratory Procedures
2.3. Ethical Approval
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coronavirus World Health Organization (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 26 August 2022).
- Word Health Organization. Case Definitions for Surveillance of Severe Acute Respiratory Syndrome (SARS). May 2003. Available online: https://www.who.int/ith/diseases/sars/en/ (accessed on 6 August 2022).
- Word Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV). November 2017. Available online: https://www.who.int/emergencies/mers-cov/en/ (accessed on 8 August 2022).
- Khamis, F.; Al-Zakwani, I.; Al Naamani, H.; Al Lawati, S.; Pandak, N.; Omar, M.B.; Al Bahrani, M.; Bulushi, Z.A.; Al Khalili, H.; Al Salmi, I.; et al. Clinical characteristics and outcomes of the first 63 adult patients hospitalized with COVID-19: An experience from Oman. J. Infect. Public Health 2020, 13, 906–913. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/region/emro/country/om (accessed on 26 August 2022).
- Zhang, S.X.; Marioli, F.A.; Gao, R.; Wang, S. A second wave? What do people mean by COVID waves?—A working definition of epidemic waves. Risk Manag. Health Policy 2021, 14, 3775–3782. [Google Scholar] [CrossRef] [PubMed]
- Khamis, F.; Al Rashidi, B.; Al-Zakwani, I.; Al Wahaibi, A.H.; Al Awaidy, S.T. Epidemiology of COVID-19 infection in Oman: Analysis of the first 1304 Cases. Oman Med. J. 2020, 35, e145. [Google Scholar] [CrossRef] [PubMed]
- Al Awaidy, S.T.; Khamis, F.; Al Rashidi, B.; Al Wahaibi, A.H.; Albahri, A.; Mahomed, O. Epidemiological characteristics of 69,382 COVID-19 patients in Oman. J. Epidemiol. Glob. Health 2021, 11, 326–337. [Google Scholar] [CrossRef]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Eng. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- Li, J.Y.; You, Z.; Wang, Q.; Zhou, Z.J.; Qiu, Y.; Luo, R.; Ge, X.Y. The epidemic of 2019-novel-coronavirus (2019-nCoV) pneumonia and insights for emerging infectious diseases in the future. Microbes Infect. 2020, 22, 80–85. [Google Scholar] [CrossRef]
- Scovino, A.M.; Dahab, E.C.; Vieira, G.F.; Freire-de-Lima, L.; Freire-de-Lima, C.G.; Morrot, A. SARS-CoV-2’s Variants of concern: A brief characterization. Front. Immunol. 2022, 13, 834098. [Google Scholar] [CrossRef]
- SARS-CoV-2 Variants of Concern and Variants under Investigation in England. Technical Briefing 10. Public Health England. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/984274/Variants_of_Concern_VOC_Technical_Briefing_10_England.pdf (accessed on 6 August 2022).
- Niemi, M.E.K.; Daly, M.J.; Ganna, A. The human genetic epidemiology of COVID-19. Nat. Rev. Genet. 2022, 23, 533–546. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, X. Spatial variations of the third and fourth COVID-19 waves in Hong Kong: A comparative study using built environment and socio-demographic characteristics. Environ. Plan B. Urban. Anal. City Sci. 2022, 23998083221107019. [Google Scholar] [CrossRef]
- Iftimie, S.; López-Azcona, A.F.; Vallverdú, I.; Hernández-Flix, S.; de Febrer, G.; Parra, S.; Hernández-Aguilera, A.; Riu, F.; Joven, J.; Andreychuk, N.; et al. First and second waves of coronavirus disease-19: A comparative study in hospitalized patients in Reus, Spain. PLoS ONE 2021, 16, e0248029. [Google Scholar] [CrossRef]
- Hoogenboom, W.S.; Pham, A.; Anand, H.; Fleysher, R.; Buczek, A.; Soby, S.; Mirhaji, P.; Yee, J.; Duong, T.Q. Clinical characteristics of the first and second COVID-19 waves in the Bronx, New York: A retrospective cohort study. Lancet. Reg. Health Am. 2021, 3, 100041. [Google Scholar] [CrossRef]
- Matsunaga, N.; Hayakawa, K.; Asai, Y.; Tsuzuki, S.; Terada, M.; Suzuki, S.; Ohtsu, H.; Kitajima, K.; Toyoda, A.; Suzuki, K.; et al. Clinical characteristics of the first three waves of hospitalised patients with COVID-19 in Japan prior to the widespread use of vaccination: A nationwide observational study. Lancet. Reg. Health West. Pac. 2022, 22, 100421. [Google Scholar] [CrossRef]
- Aabed, K.; Lashin, M.M.A. An analytical study of the factors that influence COVID-19 spread. Saudi J. Biol. Sci. 2021, 28, 1177–1195. [Google Scholar] [CrossRef]
- Abu-Hammad, O.; Alnazzawi, A.; Borzangy, S.S.; Abu-Hammad, A.; Fayad, M.; Saadaledin, S.; Abu-Hammad, S.; Dar-Odeh, N. Factors Influencing Global Variations in COVID-19 Cases and Fatalities. A Review. Healthcare 2020, 8, 216. [Google Scholar] [CrossRef]
- Weaver, A.K.; Head, J.R.; Gould, C.F.; Carlton, E.J.; Remais, J.V. Environmental Factors Influencing COVID-19 Incidence and Severity. Annu. Rev. Public Health 2022, 43, 271–291. [Google Scholar] [CrossRef]
- Magd, H.; Asmi, K.; Henry, K. COVID-19 influencing factors on transmission and incidence rates-validation analysis. J. Biomed. Res. Environ. Sci. 2020, 1, 277–291. [Google Scholar] [CrossRef]
- Novel Corona Virus (COVID-19) Case Definition, DGDSC 2019-n CoV algorithm Version 9.0 April 2020, Ministry of Health, Oman.
- COVID-19 Clinical Management. Available online: https://apps.who.int/iris/bitstream/handle/10665/338871/WHO-2019-nCoV-clinical-web_annex-2021.1-eng.pdf (accessed on 25 August 2022).
- Kunno, J.; Supawattanabodee, B.; Sumanasrethakul, C.; Wiriyasivaj, B.; Kuratong, S.; Kaewchandee, C. Comparison of different waves during the COVID-19 pandemic: Retrospective descriptive study in Thailand. Adv. Prev. Med. 2021, 2021, 5807056. [Google Scholar] [CrossRef]
- Cheng, X.; Li, Y.; Zhang, Y.; Lu, J. The characteristics of and responses to the two COVID-19 outbreak waves in Hebei Province of China, January 2020 to February 2021. Epidemiol. Infect. 2021, 149, e212. [Google Scholar] [CrossRef]
- Acuña-Castillo, C.; Inostroza-Molina, A.; Castro, S.A.; Molina-Cabrera, S.; Leiva-Salcedo, E.; Riquelme, D.; Luraschi, R.; Barrera-Avalos, C.; Vallejos-Vidal, E.; Mella-Torres, A.; et al. Comparison of the first and second wave of infections by SARS-CoV-2: A retrospective and longitudinal study from a primary health care center in Santiago of Chile. Front. Public Health 2022, 10, 913519. [Google Scholar] [CrossRef]
- Seong, H.; Hyun, H.J.; Yun, J.G.; Noh, J.Y.; Cheong, H.J.; Kim, W.J.; Song, J.Y. Comparison of the second and third waves of the COVID-19 pandemic in South Korea: Importance of early public health intervention. Int. J. Infect. Dis. 2021, 104, 742–745. [Google Scholar] [CrossRef]
- Otshudiema, J.O.; Folefack, G.L.T.; Nsio, J.M.; Mbala-Kingebeni, P.; Kakema, C.H.; Kosianza, J.B.; Mfumu, A.K.; Saidi, G.N.; Kabongo, P.M.; Okum, R.; et al. Epidemiological comparison of four COVID-19 waves in the democratic republic of the congo. J. Epidemiol. Glob. Health 2022, 12, 316–327. [Google Scholar] [CrossRef]
- Anscombe, C.; Lissauer, S.; Thole, H.; Rylance, J.; Dula, D.; Menyere, M.; Kutambe, B.; van der Veer, C.; Phiri, T.; Banda, N.P.; et al. A comparison of four epidemic waves of COVID-19 in Malawi; an observational cohort study. medRxiv 2022. [Google Scholar] [CrossRef]
- Davies, M.A.; Kassanjee, R.; Rosseau, P.; Morden, E.; Johnson, L.; Solomon, W.; Hsiao, N.Y.; Hussey, H.; Meintjes, G.; Paleker, M.; et al. Outcomes of laboratory-confirmed SARS-CoV-2 infection in the Omicron-driven fourth wave compared with previous waves in the Western Cape Province, South Africa. Trop. Med. Int. Health 2022, 27, 564–573. [Google Scholar] [CrossRef]
- Bolze, A.; Luo, S.; White, S.; Cirulli, E.T.; Wyman, D.; Dei Rossi, A.; Machado, H.; Cassens, T.; Jacobs, S.; Schiabor Barrett, K.M.; et al. SARS-CoV-2 variant Delta rapidly displaced variant Alpha in the United States and led to higher viral loads. Cell. Rep. Med. 2002, 3, 100564. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, J.; Zhang, L.; Chen, S.; Gao, J.; Jiao, H. The global transmission of new coronavirus variants. Environ. Res. 2022, 206, 112240. [Google Scholar] [CrossRef]
- Sheikhi, F.; Yousefian, N.; Tehranipoor, P.; Kowsari, Z. Estimation of the basic reproduction number of Alpha and Delta variants of COVID-19 pandemic in Iran. PLoS ONE 2022, 17, e0265489. [Google Scholar] [CrossRef]
- Dutta, A. COVID-19 waves: Variant dynamics and control. Sci. Rep. 2022, 12, 9332. [Google Scholar] [CrossRef]
- Alizon, S.; Sofonea, M.T. SARS-CoV-2 virulence evolution: A virulence theory, immunity and trade-offs. J. Evol. Biol. 2021, 34, 1867–1877. [Google Scholar] [CrossRef]
- Safari, I.; Elahi, E. Evolution of the SARS-CoV-2 genome and emergence of variants of concern. Arch. Virol. 2022, 167, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Cosar, B.; Karagulleoglu, Z.Y.; Unal, S.; Ince, A.T.; Uncuoglu, D.B.; Tunzer, G.; Kilinc, B.R. SARS-CoV-2 Mutations and their Viral Variants. Cytokine Growth Factor Rev. 2022, 63, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, E.; Shafiee, F.; Shahzamani, K.; Ranjbar, M.M.; Alibakhshi, A.; Beikmohammadi, L.; Shariati, L.; Hooshmandi, S.; Ataei, B.; Javanmard, S.H. Novel and emerging mutations of SARS-CoV-2: Biomedical implications. Biomed. Pharmacother. 2021, 139, 111599. [Google Scholar] [CrossRef] [PubMed]
- Harvey, W.T.; Carabelli, A.M.; Jackson, B.; Gupta, R.K.; Thomson, E.C.; Harrison, E.M.; Ludden, C.; Reeve, R.; Rambaut, A.; COVID-19 Genomics UK (COG-UK) Consortium; et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 2021, 19, 409–424. [Google Scholar] [CrossRef] [PubMed]
- Di Caro, A.; Cunha, F.; Petrosillo, N.; Beeching, N.J.; Ergonul, O.; Petersen, E.; Koopmans, M.P.G. Severe acute respiratory syndrome coronavirus 2 escape mutants and protective immunity from natural infections or immunizations. Clin. Microbiol. Infect. 2021, 27, 823–826. [Google Scholar] [CrossRef] [PubMed]
- Schultze, J.L.; Aschenbrenner, A.C. COVID-19 and the human innate immune system. Cell 2021, 184, 1671–1692. [Google Scholar] [CrossRef] [PubMed]
- Ricci, D.; Etna, M.P.; Rizzo, F.; Sandini, S.; Severa, M.; Coccia, E.M. Innate immune response to SARS-CoV-2 infection: From cells to soluble mediators. Int. J. Mol. Sci. 2021, 22, 7017. [Google Scholar] [CrossRef]
- Al-Mahruqi, S.; Al-Wahaibi, A.; Khan, A.L.; Al-Jardani, A.; Asaf, S.; Alkindi, H.; Al-Kharusi, S.; Al-Rawahi, A.N.; Al-Rawahi, A.; Al-Salmani, M.; et al. Molecular epidemiology of COVID-19 in Oman: A molecular and surveillance study for the early transmission of COVID-19 in the country. Int. J. Infect. Dis. 2021, 104, 139–149. [Google Scholar] [CrossRef]
- Athavale, P.; Kumar, V.; Clark, J.; Mondal, S.; Sur, S. Differential Impact of COVID-19 Risk Factors on Ethnicities in the United States. Front. Public Health 2021, 9, 743003. [Google Scholar] [CrossRef]
- Zhang, J.-J.; Dong, X.; Liu, G.-H.; Gao, Y.-D. Risk and Protective Factors for COVID-19 Morbidity, Severity, and Mortality. Clin. Rev. Allergy Immunol. 2022, 1–18. [Google Scholar] [CrossRef]
- Cannistraci, C.V.; Valsecchi, M.G.; Capua, I. Age-sex population adjusted analysis of disease severity in epidemics as a tool to devise public health policies for COVID-19. Sci. Rep. 2021, 11, 11787. [Google Scholar] [CrossRef]
- Statsenko, Y.; Al Zahmi, F.; Habuza, T.; Almansoori, T.M.; Smetanina, D.; Simiyu, G.L.; Neidl-Van Gorkom, K.; Ljubisavljevic, M.; Awawdeh, R.; Elshekhali, H.; et al. Impact of age and sex on COVID-19 severity assessed from radiologic and clinical findings. Front. Cell. Infect. Microbiol. 2022, 11, 777070. [Google Scholar] [CrossRef]
- Starke, K.R.; Reissig, D.; Petereit-Haack, G.; Schmauder, S.; Niehaus, A.; Seidler, A. The isolated effect of age on the risk of COVID-19 severe outcomes: A systematic review with meta-analysis. BMJ Glob. Health 2021, 6, e006434. [Google Scholar] [CrossRef]
- Khamis, F.; Memish, Z.; Bahrani, M.A.; Dowaiki, S.A.; Pandak, N.; Bolushi, Z.A.; Salmi, I.A.; Al-Zakwani, I. Prevalence and predictors of in-hospital mortality of patients hospitalized with COVID-19 infection. J. Infect. Public Health 2021, 14, 759–765. [Google Scholar] [CrossRef]
- Herrera-Esposito, D.; de Los Campos, G. Age-specific rate of severe and critical SARS-CoV-2 infections estimated with multi-country seroprevalence studies. BMC. Infect. Dis. 2022, 22, 311. [Google Scholar] [CrossRef]
- Gabrielli, M. COVID-19 in Older Adults at the Time of the Omicron Variant. J. Clin. Med. 2022, 11, 5273. [Google Scholar] [CrossRef]
- Nyberg, T.; Ferguson, N.M.; Nash, S.G.; Webster, H.H.; Flaxman, S.; Andrews, N.; Hinsley, W.; Bernal, J.L.; Kall, M.; Bhatt, S.; et al. Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta m (B.1.617.2) variants in England: A cohort study. Lancet 2022, 399, 1303–1312. [Google Scholar] [CrossRef]
- Fu, E.L.; Janse, R.J.; de Jong, Y.; van der Endt, V.H.W.; Milders, J.; van der Willik, E.M.; de Rooij, E.N.M.; Dekkers, O.M.; Rotmans, J.I.; van Diepen, M. Acute kidney injury and kidney replacement therapy in COVID-19: A systematic review and meta-analysis. Clin. Kidney J. 2020, 13, 550–563. [Google Scholar] [CrossRef]
- Bowe, B.; Cai, M.; Xie, Y.; Gibson, A.K.; Maddukuri, G.; Al-Aly, Z. Acute kidney injury in a national cohort of hospitalized USA veterans with COVID-19. Clin. J. Am. Soc. Nephrol. 2020, 16, 14–25. [Google Scholar] [CrossRef]
- Charytan, D.M.; Parnia, S.; Khatri, M.; Petrilli, C.M.; Jones, S.; Benstein, J.; Horwitz, L.I. Decreasing incidence of acute kidney injury in patients with COVID-19 critical illness in New York city. Kidney Int. Rep. 2021, 6, 916–927. [Google Scholar] [CrossRef]
- Buttenschøn, H.N.; Lynggaard, V.; Sandbøl, S.G.; Glassou, E.N.; Haagerup, A. Comparison of the clinical presentation across two waves of COVID-19: A retrospective cohort study. BMC Infect. Dis. 2022, 22, 423. [Google Scholar] [CrossRef]
- Domingo, P.; Pomar, V.; Mur, I.; Castellví, I.; Corominas, H.; de Benito, N. Not all COVID-19 pandemic waves are alike. Clin. Microbiol. Infect. 2021, 27, e7–e1040. [Google Scholar] [CrossRef]
- Maslo, C.; Friedland, R.; Toubkin, M.; Laubscher, A.; Akaloo, T.; Kama, B. Characteristics and Outcomes of hospitalized patients in South Africa during the COVID-19 Omicron wave compared with previous waves. JAMA 2022, 327, 583–584. [Google Scholar] [CrossRef] [PubMed]
- Challen, R.; Brooks-Pollock, E.; Read, J.M.; Dyson, L.; Tsaneva-Atanasova, K.; Danon, L. Risk of mortality in patients infected with SARS-CoV-2 variant of concern 202012/1: Matched cohort study. BMJ 2021, 372, n579. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, N.; Cao, Z.; Gundrum, J.; Sianis, J.; Safo, S. Risk factors associated with in-hospital mortality in a US National sample of patients with COVID-19. JAMA. Netw. Open 2020, 3, e2029058. [Google Scholar] [CrossRef] [PubMed]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Saito, S.; Asai, Y.; Matsunaga, N.; Hayakawa, K.; Terada, M.; Ohtsu, H.; Tsuzuki, S.; Ohmagari, N. First and second COVID-19 waves in Japan: A comparison of disease severity and characteristics. J. Infect. 2021, 82, 84–123. [Google Scholar] [CrossRef]
- Jalali, S.F.; Ghassemzadeh, M.; Mouodi, S.; Javanian, M.; Akbari Kani, M.; Ghadimi, R.; Bijani, A. Epidemiologic comparison of the first and second waves of coronavirus disease in Babol, North of Iran. Caspian. J. Intern. Med. 2020, 11, 544–550. [Google Scholar]
- Skarbinski, J.; Wood, M.S.; Chervo, T.C.; Schapiro, J.M.; Elkin, E.P.; Valice, E.; Amsden, L.B.; Hsiao, C.; Quesenberry, C.; Corley, D.A.; et al. Risk of severe clinical outcomes among persons with SARS-CoV-2 infection with differing levels of vaccination during widespread Omicron (B.1.1.529) and Delta (B.1.617.2) variant circulation in Northern California: A retrospective cohort study. Lancet Reg. Health Am. 2022, 12, 100297. [Google Scholar] [CrossRef]
- Krutikov, M.; Stirrup, O.; Nacer-Laidi, H.; Azmi, B.; Fuller, C.; Tut, G.; Palmer, T.; Shroti, M.; Irwin-Singer, A.; Baynton, V.; et al. Outcomes of SARS-CoV-2 omicron infection in residents of long-term care facilities in England (VIVALDI): A prospective, cohort study. Lancet. Healthy Longev. 2022, 3, e347–e355. [Google Scholar] [CrossRef]
- Danza, P.; Koo, T.H.; Haddix, M.; Fisher, R.; Traub, E.; Oyong, K.; Balter, S. SARS-CoV-2 infection and hospitalization among adults aged ≥18 years, by vaccination status, before and during SARS-CoV-2 B.1.1.529 (Omicron) variant predominance—Los Angeles County, California, November 7, 2021–January 8, 2022. MMWR. Morb. Mortal. Wkly. Rep. 2022, 71, 177–181. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Implications of the Emergence and Spread of the SARS-CoV-2 Variants of Concern BA.4 and BA.5 for the EU/EEA—13 June 2022; ECDC: Stockholm, Sweden, 2022. [Google Scholar]
- Lauring, A.S.; Hodcroft, E.B. Genetic variants of SARS-CoV-2—What do they mean? JAMA 2021, 325, 529–531. [Google Scholar] [CrossRef]
- Abdool Karim, S.S.; de Oliveira, T. New SARS-CoV-2 variants—Clinical, public health, and vaccine implications. N. Engl. J. Med. 2021, 384, 1866–1868. [Google Scholar] [CrossRef]
- Shams, S.A.; Haleem, A.; Javaid, M. Analyzing COVID-19 pandemic for unequal distribution of tests, identified cases, deaths, and fatality rates in the top 18 countries. Diabetes Metab. Syndr. 2020, 14, 953–961. [Google Scholar] [CrossRef]
Characteristic, n (%) Unless Specified Otherwise | All (N = 1462) | COVID-19 Variant | p-Value | |||
---|---|---|---|---|---|---|
Wuhan (n = 988) | Alpha (n = 40) | Delta (n = 209) | Omicron (n = 225) | |||
Demographic | ||||||
Age, mean ± SD, years | 55 ± 17 | 54 ± 16 | 57 ± 16 | 57 ± 17 | 58 ± 20 | 0.006 |
Male | 924 (63%) | 637 (64%) | 24 (60%) | 129 (62%) | 134 (60%) | 0.504 |
Oman citizen (N = 1409) | 1130 (80%) | 764 (77%) | 31 (78%) | 167 (80%) | 168 (98%) | <0.001 |
Comorbidities | ||||||
Diabetes mellitus | 681 (47%) | 488 (49%) | 21 (53%) | 81 (39%) | 91 (40%) | 0.007 |
Hypertension | 746 (51%) | 505 (51%) | 24 (60%) | 94 (45%) | 123 (55%) | 0.136 |
Respiratory disease * | 162 (11%) | 113 (11%) | 9 (23%) | 21 (10%) | 19 (8.4%) | 0.065 |
Heart disease (N = 1409) ** | 288 (20%) | 182 (18%) | 7 (18%) | 35 (17%) | 64 (37%) | <0.001 |
Liver disease | 55 (3.8%) | 43 (4.4%) | 1 (2.5%) | 3 (1.4%) | 8 (3.6%) | 0.214 |
Intensive care unit (ICU) admission (N = 1461) | 707 (48%) | 509 (52%) | 27 (68%) | 117 (56%) | 54 (24%) | <0.001 |
Bilateral infiltrate (N = 1461) | 1099 (75%) | 834 (84%) | 33 (83%) | 161 (77%) | 71 (32%) | <0.001 |
Length of hospital stay (N = 1454) | 8 (4–15) | 8 (4–15) | 11 (6–23) | 9 (5–18) | 5 (3–10) | <0.001 |
Kidney impairment (N = 1453) | 523 (36%) | 305 (31%) | 16 (40%) | 81 (39%) | 121 (56%) | <0.001 |
Non-invasive ventilation | 403 (28%) | 275 (28%) | 10 (25%) | 75 (36%) | 43 (19%) | 0.001 |
Acute respiratory distress syndrome (ARDS) (N = 1457) | 573 (39%) | 417 (42%) | 24 (60%) | 95 (45%) | 37 (17%) | <0.001 |
In-hospital mortality | 393 (27%) | 250 (25%) | 15 (38%) | 76 (36%) | 52 (23%) | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khamis, F.; Al Awaidy, S.; Ba’Omar, M.; Osman, W.; Chhetri, S.; Ambusaid, Z.; Al Fahdi, Z.; Al Lawati, J.; Al Sulaimi, K.; Al Bulushi, S.A.; et al. The Impact of Demographic, Clinical Characteristics and the Various COVID-19 Variant Types on All-Cause Mortality: A Case-Series Retrospective Study. Diseases 2022, 10, 100. https://doi.org/10.3390/diseases10040100
Khamis F, Al Awaidy S, Ba’Omar M, Osman W, Chhetri S, Ambusaid Z, Al Fahdi Z, Al Lawati J, Al Sulaimi K, Al Bulushi SA, et al. The Impact of Demographic, Clinical Characteristics and the Various COVID-19 Variant Types on All-Cause Mortality: A Case-Series Retrospective Study. Diseases. 2022; 10(4):100. https://doi.org/10.3390/diseases10040100
Chicago/Turabian StyleKhamis, Faryal, Salah Al Awaidy, Muna Ba’Omar, Wessam Osman, Shabnam Chhetri, Zaiyana Ambusaid, Zakariya Al Fahdi, Jaber Al Lawati, Khalsa Al Sulaimi, Salma Ali Al Bulushi, and et al. 2022. "The Impact of Demographic, Clinical Characteristics and the Various COVID-19 Variant Types on All-Cause Mortality: A Case-Series Retrospective Study" Diseases 10, no. 4: 100. https://doi.org/10.3390/diseases10040100
APA StyleKhamis, F., Al Awaidy, S., Ba’Omar, M., Osman, W., Chhetri, S., Ambusaid, Z., Al Fahdi, Z., Al Lawati, J., Al Sulaimi, K., Al Bulushi, S. A., Al Bahrani, M., & Al-Zakwani, I. (2022). The Impact of Demographic, Clinical Characteristics and the Various COVID-19 Variant Types on All-Cause Mortality: A Case-Series Retrospective Study. Diseases, 10(4), 100. https://doi.org/10.3390/diseases10040100