The Effect of Evaluating Perfusion with Infrared Fluorescent Angiography on Flap Survival in Head and Neck Free Flap Reconstruction
Abstract
:1. Introduction
2. Material and Method
2.1. SPY Measurements
2.2. Fluid Therapy
2.3. Monitoring
2.4. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tachon, G.; Harrois, A.; Tanaka, S.; Kato, H.; Huet, O.; Pottecher, J.; Vicaut, E.; Duranteau, J. Microcirculatory alterations in traumatic hemorrhagic shock. Crit Care Med. 2014, 42, 1433–1441. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.E.; Garcia, C.A.; Murray, J.; Elwood, E.T.; Whitty, A. Fluorescent intraoperative tissue angiography for the evaluation of the viability of pedicled TRAM flaps. Plast. Reconstr. Surg. 2009, 124, 53. [Google Scholar]
- Xie, J.; Mu, R.; Fang, M.; Cheng, Y.; Senchyna, F.; Moreno, A.; Banaei, N.; Rao, J. A dual-caged resorufin probe for rapid screening of infections resistant to lactam antibiotics. Chem Sci. 2021, 12, 9153–9161. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, S.; Sun, Y.; Xu, H.; Xu, Z.; Liang, X.; Yang, J.; Song, W.; Chen, M.; Fang, M. Evaluation of a biomarker (NO) dynamics in inflammatory zebrafish and periodontitis saliva samples via a fast-response and sensitive fluorescent probe. Bioorg. Chem. 2024, 143, 107014. [Google Scholar] [CrossRef] [PubMed]
- Sjöberg, T.; Numan, A.; de Weerd, L. Liberal versus Modified Intraoperative Fluid Management in Abdominal-flap Breast Reconstructions. A Clinical Study. Plast. Reconstr. Surg. Glob. Open 2021, 9, e3830. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, M.C.; Moore, P.G.; Liu, H. Goal-directed therapy in intraoperative fluid and hemodynamic management. J. Biomed. Res. 2013, 27, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Bennett, V.A.; Vidouris, A.; Cecconi, M. Effects of Fluids on the Macro- and Microcirculations. Crit. Care 2018, 22, 74. [Google Scholar] [CrossRef] [PubMed]
- Cooper, E.S.; Silverstein, D.C. Fluid Therapy and the Microcirculation in Health and Critical Illness. Front. Vet. Sci. 2021, 8, 625708. [Google Scholar] [CrossRef] [PubMed]
- Jansen, S.M.; de Bruin, D.M.; van Berge Henegouwen, M.I.; Strackee, S.D.; Veelo, D.P.; van Leeuwen, T.G.; Gisbertz, S.S. Can we predict necrosis intra-operatively? Real-time optical quantitative perfusion imaging in surgery: Study protocol for a prospective, observational, in vivo pilot study. Pilot Feasibility Stud. 2017, 3, 65. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.M.; Kim, P.S.; Rabie, A.N.; Lee, B.T.; Lin, S.J. Vasopressors and reconstructive flap perfusion: A review of the literature comparing the effects of various pharmacologic agents. Ann. Plast. Surg. 2014, 73, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Kass, J.L.; Lakha, S.; Levin, M.A.; Joseph, T.; Lin, H.; Genden, E.M.; Teng, M.S.; Miles, B.A.; DeMaria, S. Intraoperative hypotension and flap loss in free tissue transfer surgery of the head and neck. Head Neck 2018, 40, 2334–2339. [Google Scholar] [CrossRef] [PubMed]
- Grant, D.W.; Kim, B.D.; Halen, J.P.V.; Kim, J.Y.S. Anesthesia Duration as an Independent Risk Factor for Postoperative Complications in Free Flap Surgery: A Review of 1305 Surgical Cases. J. Reconstr. Microsurg. 2014, 30, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Ettinger, K.S.; Arce, K.; Lohse, C.M.; Peck, B.W.; Reiland, M.D.; Bezak, B.J.; Moore, E.J. Higher perioperative fluid administration is associated with increased rates of complications following head and neck microvascular reconstruction with fibular free flaps. Microsurgery 2017, 37, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Wan, M.; Zhang, J.X.; Ding, Y.; Jin, Y.; Bedford, J.; Nagarajan, M.; Bucevska, M.; Courtemanche, D.J.; Arneja, J.S. High-Risk Plastic Surgery: An Analysis of 108,303 Cases from the American College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP). Plast. Surg. 2020, 28, 57–66. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ince, C. Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit. Care 2015, 19 (Suppl. S3), S8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Goncalves, L.N.; van den Hoven, P.; van Schaik, J.; Leeuwenburgh, L.; Hendricks, C.H.F.; Verduijn, P.S.; van der Bogt, K.E.A.; van Rijswijk, C.S.P.; Schepers, A.; Vahrmeijer, A.L.; et al. Perfusion Parameters in Near-Infrared Fluorescence Imaging with Indocyanine Green: A Systematic Review of the Literature. Life 2021, 11, 433. [Google Scholar] [CrossRef] [PubMed]
- Dasta, J.F.; McLaughlin, T.P.; Mody, S.H.; Piech, C.T. Daily cost of an intensive care unit day: The contribution of mechanical ventilation. Crit Care Med. 2005, 33, 1266–1271. [Google Scholar] [CrossRef] [PubMed]
- Hackethal, A.; Hirschburger, M.; Eicker, S.O.; Mücke, T.; Lindner, C.; Buchweitz, O. Role of Indocyanine Green in Fluorescence Imaging with Near-Infrared Light to Identify Sentinel Lymph Nodes, Lymphatic Vessels and Pathways Prior to Surgery—A Critical Evaluation of Options. Geburtshilfe Und Frauenheilkd. 2018, 78, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Massaro, A.; Gomez, J.; Weyh, A.M.; Bunnell, A.; Warrick, M.; Pirgousis, P.; Fernandes, R. Serial Perioperative Assessment of Free Flap Perfusion with Laser Angiography. Craniomaxillofac. Trauma Reconstr. 2021, 14, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Chong, M.A.; Wang, Y.; Berbenetz, N.M.; McConachie, I. Does goal-directed haemodynamic and fluid therapy improve peri-operative outcomes?: A systematic review and meta-analysis. Eur. J. Anaeesthesiol. 2018, 35, 469–483. [Google Scholar] [CrossRef] [PubMed]
Mean | Std. Deviation | |
---|---|---|
Age (years) | 55.13 | 20.066 |
BMI | 25.63 | 23.45 |
Preoperative Spy | 66.687 | 24.5406 |
Postoperative spy | 68.450 | 28.0438 |
Amount of perioperative transfusion (mL) | 332.05 | 62.9064 |
Perioperative cristalloid use (mL) | 4551.28 | 1907.861 |
Perioperative colloid use (mL) | 733.33 | 409.964 |
Duration of anesthesia (min) | 477.56 | 121.357 |
Duration of surgery (min) | 466.67 | 119.513 |
Preoperative MAP (mmHg) | 98.28 | 11.507 |
Postoperative MAP (mmHg) | 84.56 | 10.845 |
Preoperative temperature (°C) | 36.51 | 0.526 |
Postoperative temperature (°C) | 36.59 | 0.604 |
Intraoperative bleeding (mL) | 764.10 | 764.074 |
Urine output (mL) | 1095.90 | 750.911 |
Preoperative pH | 7.4497 | 0.03572 |
Postoperative pH | 7.4374 | 0.04121 |
Preoperative lactate | 1.3436 | 0.56279 |
Postoperative lactate | 1.6692 | 0.90355 |
Difference between preoperative and postoperative SPY | −1.7628 | 17.27960 |
Duration of Drainage | Amount of Drainage | Hospital Stay (Days) | ICU Stay (Days) | |||||
---|---|---|---|---|---|---|---|---|
Hospital stay (days) | 0.694 | 0.000 | 0.564 | 0.000 | ||||
ICU stay (days) | 0.571 | 0.000 | 0.443 | 0.005 | ||||
Amount of perioperative transfusion (mL) | 0.200 | 0.223 | 0.242 | 0.138 | 0.165 | 0.315 | 0.235 | 0.151 |
Perioperative cristalloid use (mL) | 0.300 | 0.063 | 0.365 | 0.022 | 0.190 | 0.247 | 0.213 | 0.192 |
Perioperative colloid use (mL) | 0.120 | 0.465 | 0.156 | 0.344 | 0.025 | 0.881 | 0.096 | 0.560 |
Postoperative lactate | 0.056 | 0.737 | −0.095 | 0.565 | −0.079 | 0.632 | 0.022 | 0.896 |
Postoperative Hb | −0.072 | 0.661 | −0.092 | 0.577 | −0.206 | 0.209 | −0.121 | 0.464 |
Postoperative pH | 0.350 | 0.029 | 0.293 | 0.070 | 0.362 | 0.023 | 0.238 | 0.144 |
Postoperative temperature (°C) | 0.109 | 0.507 | −0.023 | 0.889 | −0.034 | 0.836 | 0.038 | 0.818 |
Postoperative MAP (mmHg) | −0.024 | 0.884 | −0.011 | 0.947 | −0.023 | 0.890 | −0.094 | 0.570 |
Duration of anesthesia (min) | 0.293 | 0.070 | 0.290 | 0.073 | 0.435 | 0.006 | 0.336 | 0.037 |
Duration of surgery (min) | 0.278 | 0.086 | 0.282 | 0.082 | 0.453 | 0.004 | 0.335 | 0.037 |
ASA status | 0.158 | 0.336 | 0.270 | 0.097 | 0.208 | 0.204 | 0.218 | 0.182 |
Age (years) | 0.022 | 0.896 | 0.028 | 0.866 | 0.124 | 0.453 | 0.115 | 0.484 |
BMI | 0.107 | 0.517 | 0.088 | 0.595 | −0.041 | 0.803 | 0.212 | 0.195 |
Flap or Donor Infection | |||||
---|---|---|---|---|---|
Mean | SD | Mean | SD | p | |
Preoperative SPY score | 63.68 | 21.855 | 78.35 | 32.041 | 0.253 |
Postoperative SPY score | 70.78 | 21.212 | 59.44 | 47.162 | 0.527 |
Difference between preoperative and postoperative SPY scores | −7.10 | 8.057 | 18.91 | 26.983 | 0.008 |
Fluid balance for 48 h | 1397.10 | 520.578 | 1075.00 | 781.482 | 0.299 |
Amount of perioperative transfusion | 345.16 | 688.641 | 281.25 | 334.811 | 0.712 |
Perioperative cristalloid use | 4306.45 | 1705.469 | 5500.00 | 2449.490 | 0.227 |
Perioperative colloid use | 729.03 | 382.268 | 750.00 | 534.522 | 0.919 |
Age | 53.42 | 21.255 | 61.75 | 13.657 | 0.194 |
BMI | 25.40 | 2.387 | 26.49 | 2.089 | 0.228 |
ASA status | 1.77 | 0.560 | 2.00 | 0.535 | 0.314 |
Duration of anesthesia | 454.03 | 117.597 | 568.75 | 93.417 | 0.012 |
Duration of surgery | 443.39 | 115.732 | 556.88 | 91.844 | 0.017 |
Postoperative MAP | 85.55 | 11.239 | 80.75 | 8.730 | 0.215 |
Postoperative lactate | 1.65 | 0.972 | 1.76 | 0.607 | 0.677 |
Postoperative temperature | 36.58 | 0.649 | 36.61 | 0.422 | 0.868 |
Amount of bleeding | 811.29 | 839.018 | 581.25 | 322.864 | 0.233 |
Postoperative Ph | 7.43 | 0.041 | 7.45 | 0.044 | 0.475 |
Postoperative Hb | 11.79 | 1.919 | 10.77 | 1.004 | 0.132 |
Wound Dehiscense | |||||
---|---|---|---|---|---|
Mean | SD | Mean | SD | p | |
Preoperative SPY score | 65.38 | 26.483 | 71.04 | 17.046 | 0.456 |
Postoperative SPY score | 73.11 | 27.964 | 52.91 | 23.408 | 0.074 |
Difference between preoperative and postoperative SPY scores | −7.73 | 8.542 | 18.13 | 23.976 | 0.001 |
Fluid balance for 48 h | 1356.67 | 548.976 | 1245.56 | 727.961 | 0.680 |
Amount of perioperative transfusion | 255.00 | 367.740 | 588.89 | 1137.095 | 0.410 |
Perioperative cristalloid use | 4516.67 | 1966.633 | 4666.67 | 1802.776 | 0.833 |
Perioperative colloid use | 736.67 | 386.392 | 722.22 | 506.897 | 0.939 |
Age | 53.93 | 21.598 | 59.11 | 14.084 | 0.408 |
BMI | 25.31 | 2.409 | 26.67 | 1.870 | 0.107 |
ASA status | 1.77 | 0.568 | 2.00 | 0.500 | 0.253 |
Duration of anesthesia | 469.50 | 126.541 | 504.44 | 104.177 | 0.415 |
Duration of surgery | 457.83 | 125.125 | 496.11 | 99.114 | 0.354 |
Postoperative MAP | 84.73 | 11.629 | 84.00 | 8.246 | 0.835 |
Postoperative lactate | 1.61 | 0.967 | 1.88 | 0.653 | 0.345 |
Postoperative temperature | 36.52 | 0.652 | 36.82 | 0.338 | 0.215 |
Amount of bleeding | 673.33 | 426.237 | 1066.67 | 1407.347 | 0.431 |
Postoperative Ph | 7.43 | 0.044 | 7.45 | 0.025 | 0.114 |
Postoperative Hb | 11.64 | 1.800 | 11.40 | 1.928 | 0.745 |
Mechanical Ventilation Support | |||||
---|---|---|---|---|---|
Mean | SD | Mean | SD | p | |
Preoperative SPY score | 67.28 | 32.293 | 66.39 | 20.361 | 0.916 |
Postoperative SPY score | 74.93 | 35.819 | 65.21 | 23.384 | 0.314 |
Difference between preoperative and postoperative SPY scores | −7.65 | 6.247 | 1.18 | 20.202 | 0.135 |
Fluid balance for 48 h | 1307.69 | 455,451 | 1342,69 | 650,074 | 0.863 |
Amount of perioperative transfusion | 173.08 | 227.866 | 411.54 | 746.232 | 0.270 |
Perioperative cristalloid use | 3600.00 | 1515.476 | 5026.92 | 1929.882 | 0.034 |
Perioperative colloid use | 584.62 | 448.788 | 807.69 | 376.216 | 0.110 |
Age | 49.46 | 23.365 | 57.96 | 18.025 | 0.217 |
BMI | 24.86 | 2.369 | 26.01 | 2.282 | 0.153 |
ASA status | 1.69 | 0.751 | 1.88 | 0.431 | 0.315 |
Duration of anesthesia | 424.23 | 122.199 | 504.23 | 114.015 | 0.034 |
Duration of surgery | 415.00 | 118.691 | 492.50 | 113.431 | 0.032 |
Postoperative MAP | 84.69 | 15.124 | 84.50 | 8.305 | 0.959 |
Postoperative lactate | 1.77 | 1.154 | 1.62 | 0.770 | 0.631 |
Postoperative temperature | 36.69 | 0.496 | 36.53 | 0.655 | 0.450 |
Amount of bleeding | 426.92 | 261.100 | 932.69 | 875.208 | 0.006 |
Postoperative Ph | 7.42 | 0.048 | 7.45 | 0.035 | 0.093 |
Postoperative Hb | 12.12 | 1.669 | 11.32 | 1.846 | 0.199 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saracoglu, A.; Cabakli, G.T.; Saracoglu, K.T.; Cakmak, G.; Erdem, I.; Umuroglu, T.; Sacak, B.; Ratajczyk, P. The Effect of Evaluating Perfusion with Infrared Fluorescent Angiography on Flap Survival in Head and Neck Free Flap Reconstruction. Diseases 2024, 12, 255. https://doi.org/10.3390/diseases12100255
Saracoglu A, Cabakli GT, Saracoglu KT, Cakmak G, Erdem I, Umuroglu T, Sacak B, Ratajczyk P. The Effect of Evaluating Perfusion with Infrared Fluorescent Angiography on Flap Survival in Head and Neck Free Flap Reconstruction. Diseases. 2024; 12(10):255. https://doi.org/10.3390/diseases12100255
Chicago/Turabian StyleSaracoglu, Ayten, Gamze Tanirgan Cabakli, Kemal Tolga Saracoglu, Gul Cakmak, Ilhan Erdem, Tumay Umuroglu, Bulent Sacak, and Pawel Ratajczyk. 2024. "The Effect of Evaluating Perfusion with Infrared Fluorescent Angiography on Flap Survival in Head and Neck Free Flap Reconstruction" Diseases 12, no. 10: 255. https://doi.org/10.3390/diseases12100255
APA StyleSaracoglu, A., Cabakli, G. T., Saracoglu, K. T., Cakmak, G., Erdem, I., Umuroglu, T., Sacak, B., & Ratajczyk, P. (2024). The Effect of Evaluating Perfusion with Infrared Fluorescent Angiography on Flap Survival in Head and Neck Free Flap Reconstruction. Diseases, 12(10), 255. https://doi.org/10.3390/diseases12100255