Molecular Mechanisms Responsible for Mesenchymal Stem Cell-Dependent Attenuation of Tear Hyperosmolarity and Immune Cell-Driven Inflammation in the Eyes of Patients with Dry Eye Disease
Abstract
:1. Introduction
2. Dysfunction of Ion Channels, Tear Hyperosmolarity, and Immune Cell-Driven Inflammation: A Vicious Circle Responsible for the Pathological Changes in the Eyes of DED Patients
3. Therapeutic Potential of MSCs in the Treatment of DED
4. Molecular Mechanisms Responsible for MSC-Dependent Attenuation of Tear Hyperosmolarity in DED Patients
MSC-Derived Factor | Activated Intracellular Signaling Pathways | Molecular Mechanisms Responsible for MSC-Based Effects | Beneficial Effects in the Eyes of DED Patients | Ref. No. |
---|---|---|---|---|
EGF | EGFR/MAPK/ERK/AQP4/AQP5 | increased expression of AQP4 and AQP5 water channel proteins | enhanced tear fluid secretion | [21] |
EGF | EGFR/MAPK/ERK/MUC5AC | up-regulated expression of MUC5AC protein | improved lubrication and protection of ocular surface | [21] |
EGF | EGFR/MAPK/ERK/AMYL | increased production of amylase | improved tear film composition | [22] |
EGF | EGFR/MAPK/ERK/LIPF | enhanced secretion of lipids | attenuated evaporation of tears | [22] |
bFGF | bFGF/SPINK1 | regulation of protease activity | improved tear film composition | [23] |
bFGF | bFGF/PDGFA/VEGFA | increased neo-angiogenesis | improved delivery of nutrients to injured cells | [23,25] |
HGF | c-Met/PI3K/CLCA1 | enhanced chloride ion transport across cell membranes | enhanced tear fluid secretion | [26] |
HGF | c-Met/PI3K/AGR2 | increased mucin secretion | improved tear film stability and lubrication | [26] |
HGF | c-Met/MAPK/ SCL4A11/SLC26A4 | increased expression of bicarbonate and anion transporter proteins | improved tear film composition | [26] |
5. MSC-Based Suppression of Detrimental Immune Response in the Eyes of DED Patients
MSC-Derived Factor | Target Cell(s) | Molecular Mechanisms Responsible for MSC-Based Immunoregulation | MSC-Dependent Beneficial Effects | Ref. No |
---|---|---|---|---|
IL-1Ra | endothelial cells | binding of IL-1β to IL-1R is blocked; pro-inflammatory signals elicited from IL-1R are stopped | reduced synthesis and release of T cell-attracting chemokines; reduced post-translational modifications of ion channels | [27] |
sTNFR | endothelial cells | pro-inflammatory signals elicited by TNF-α are stopped | decreased influx of circulating leucocytes in inflamed eyes | [28] |
IDO | Tregs | inhibition of PKB/mTOR2 signaling pathway | prevented trans-differentiation of Tregs in inflammatory Th1 cells | [29] |
TGF-β | Th1 and Th17 cells | suppression of JAK/STAT signaling; G0/G1 cell cycle arrest | reduced number of activated, inflammatory T lymphocytes in the eyes of DED patients | [31] |
IL-10 | DCs | increased generation of tolerogenic DCs that favor expansion of immunosuppressive Tregs | generation of immunosuppressive microenvironment in the inflamed eyes | [31] |
6. Trophic Effects of MSCs in the Inflamed Eyes of DED Patients
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tsubota, K.; Pflugfelder, S.C.; Liu, Z.; Baudouin, C.; Kim, H.M.; Messmer, E.M.; Kruse, F.; Liang, L.; Carreno-Galeano, J.T.; Rolando, M.; et al. Defining Dry Eye from a Clinical Perspective. Int. J. Mol. Sci. 2020, 21, 9271. [Google Scholar] [CrossRef] [PubMed]
- Chester, T.; Garg, S.S.; Johnston, J.; Ayers, B.; Gupta, P. How Can We Best Diagnose Severity Levels of Dry Eye Disease: Current Perspectives. Clin. Ophthalmol. 2023, 17, 1587–1604. [Google Scholar] [CrossRef]
- Ling, J.; Chan, B.C.; Tsang, M.S.; Gao, X.; Leung, P.C.; Lam, C.W.; Hu, J.M.; Wong, C.K. Current Advances in Mechanisms and Treatment of Dry Eye Disease: Toward Anti-inflammatory and Immunomodulatory Therapy and Traditional Chinese Medicine. Front. Med. 2022, 8, 815075. [Google Scholar] [CrossRef] [PubMed]
- Messmer, E.M. Pathophysiology of dry eye disease and novel therapeutic targets. Exp. Eye Res. 2022, 217, 108944. [Google Scholar] [CrossRef] [PubMed]
- Baudouin, C.; Messmer, E.M.; Aragona, P.; Geerling, G.; Akova, Y.A.; Benítez-del-Castillo, J.; Boboridis, K.G.; Merayo-Lloves, J.; Rolando, M.; Labetoulle, M. Revisiting the vicious circle of dry eye disease: A focus on the pathophysiology of meibomian gland dysfunction. Br. J. Ophthalmol. 2016, 100, 300–306. [Google Scholar] [CrossRef]
- Ashok, N.; Khamar, P.; D’Souza, S.; Gijs, M.; Ghosh, A.; Sethu, S.; Shetty, R. Ion channels in dry eye disease. Indian J. Ophthalmol. 2023, 71, 1215–1226. [Google Scholar] [CrossRef]
- Yang, J.M.; Wei, E.T.; Kim, S.J.; Yoon, K.C. TRPM8 Channels and Dry Eye. Pharmaceuticals 2018, 11, 125. [Google Scholar] [CrossRef]
- Harrell, C.R.; Feulner, L.; Djonov, V.; Pavlovic, D.; Volarevic, V. The Molecular Mechanisms Responsible for Tear Hyperosmolarity-Induced Pathological Changes in the Eyes of Dry Eye Disease Patients. Cells 2023, 12, 2755. [Google Scholar] [CrossRef]
- Yu, L.; Yu, C.; Dong, H.; Mu, Y.; Zhang, R.; Zhang, Q.; Liang, W.; Li, W.; Wang, X.; Zhang, L. Recent Developments About the Pathogenesis of Dry Eye Disease: Based on Immune Inflammatory Mechanisms. Front Pharmacol. 2021, 12, 732887. [Google Scholar] [CrossRef]
- Reyes, J.L.; Vannan, D.T.; Eksteen, B.; Avelar, I.J.; Rodríguez, T.; González, M.I.; Mendoza, A.V. Innate and Adaptive Cell Populations Driving Inflammation in Dry Eye Disease. Mediat. Inflamm. 2018, 2018, 2532314. [Google Scholar] [CrossRef]
- Laedermann, C.J.; Abriel, H.; Decosterd, I. Post-translational modifications of voltage-gated sodium channels in chronic pain syndromes. Front Pharmacol. 2015, 6, 263. [Google Scholar] [CrossRef]
- Bhujel, B.; Oh, S.H.; Kim, C.M.; Yoon, Y.J.; Chung, H.S.; Ye, E.A.; Lee, H.; Kim, J.Y. Current Advances in Regenerative Strategies for Dry Eye Diseases: A Comprehensive Review. Bioengineering 2023, 11, 39. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhu, Y.; Liu, Y.; Yang, M.; Zeng, L. Mesenchymal Stem Cells-Derived Exosomal miR-223-3p Alleviates Ocular Surface Damage and Inflammation by Downregulating Fbxw7 in Dry Eye Models. Investig. Ophthalmol. Vis. Sci. 2024, 65, 1. [Google Scholar] [CrossRef] [PubMed]
- Margiana, R.; Markov, A.; Zekiy, A.O.; Hamza, M.U.; Al-Dabbagh, K.A.; Al-Zubaidi, S.H.; Hameed, N.M.; Ahmad, I.; Sivaraman, R.; Kzar, H.H.; et al. Clinical application of mesenchymal stem cell in regenerative medicine: A narrative review. Stem Cell Res. Ther. 2022, 13, 366. [Google Scholar] [CrossRef] [PubMed]
- Song, N.; Scholtemeijer, M.; Shah, K. Mesenchymal Stem Cell Immunomodulation: Mechanisms and Therapeutic Potential. Trends Pharmacol. Sci. 2020, 41, 653–664. [Google Scholar] [CrossRef] [PubMed]
- Műzes, G.; Sipos, F. Mesenchymal Stem Cell-Derived Secretome: A Potential Therapeutic Option for Autoimmune and Immune-Mediated Inflammatory Diseases. Cells 2022, 11, 2300. [Google Scholar] [CrossRef]
- Liao, H.J.; Yang, Y.P.; Liu, Y.H.; Tseng, H.C.; Huo, T.I.; Chiou, S.H.; Chang, C.H. Harnessing the potential of mesenchymal stem cells-derived exosomes in degenerative diseases. Regen. Ther. 2024, 26, 599–610. [Google Scholar] [CrossRef]
- Zaripova, L.N.; Midgley, A.; Christmas, S.E.; Beresford, M.W.; Pain, C.; Baildam, E.M.; Oldershaw, R.A. Mesenchymal Stem Cells in the Pathogenesis and Therapy of Autoimmune and Autoinflammatory Diseases. Int. J. Mol. Sci. 2023, 24, 16040. [Google Scholar] [CrossRef]
- Soleimani, M.; Masoumi, A.; Momenaei, B.; Cheraqpour, K.; Koganti, R.; Chang, A.Y.; Ghassemi, M.; Djalilian, A.R. Applications of mesenchymal stem cells in ocular surface diseases: Sources and routes of delivery. Expert Opin. Biol. Ther. 2023, 23, 509–525. [Google Scholar] [CrossRef]
- Jiang, Y.; Lin, S.; Gao, Y. Mesenchymal Stromal Cell-Based Therapy for Dry Eye: Current Status and Future Perspectives. Cell Transpl. 2022, 31, 9636897221133818. [Google Scholar] [CrossRef]
- Beeken, L.J.; Ting, D.S.J.; Sidney, L.E. Potential of mesenchymal stem cells as topical immunomodulatory cell therapies for ocular surface inflammatory disorders. Stem Cells Transl. Med. 2021, 1, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Møller-Hansen, M. Mesenchymal stem cell therapy in aqueous deficient dry eye disease. Acta. Ophthalmol. 2023, 101, 3–27. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.; Khan, A.W.; Kim, M.S.; Choi, S. The Role of Fibroblast Growth Factor (FGF) Signaling in Tissue Repair and Regeneration. Cells 2021, 10, 3242. [Google Scholar] [CrossRef] [PubMed]
- Sadiq, M.A.; Hanout, M.; Sarwar, S.; Hassan, M.; Do, D.V.; Nguyen, Q.D.; Sepah, Y.J. Platelet derived growth factor inhibitors: A potential therapeutic approach for ocular neovascularization. Saudi J. Ophthalmol. 2015, 29, 287–291. [Google Scholar] [CrossRef]
- Chan, J.; Lim, G.; Lee, R.; Tong, L.A. Systematic Review of Tear Vascular Endothelial Growth Factor and External Eye Diseases. Int. J. Mol. Sci. 2024, 25, 1369. [Google Scholar] [CrossRef]
- Omoto, M.; Suri, K.; Amouzegar, A.; Li, M.; Katikireddy, K.R.; Mittal, S.K.; Chauhan, S.K. Hepatocyte Growth Factor Suppresses Inflammation and Promotes Epithelium Repair in Corneal Injury. Mol. Ther. 2017, 25, 1881–1888. [Google Scholar] [CrossRef]
- Liu, Y.; Xia, P.; Yan, F.; Yuan, M.; Yuan, H.; Du, Y.; Yan, J.; Song, Q.; Zhang, T.; Hu, D.; et al. Engineered Extracellular Vesicles for Delivery of an IL-1 Receptor Antagonist Promote Targeted Repair of Retinal Degeneration. Small 2023, 19, e2302962. [Google Scholar] [CrossRef]
- Ha, D.H.; Kim, H.K.; Lee, J.; Kwon, H.H.; Park, G.H.; Yang, S.H.; Jung, J.Y.; Choi, H.; Lee, J.H.; Sung, S.; et al. Mesenchymal Stem/Stromal Cell-Derived Exosomes for Immunomodulatory Therapeutics and Skin Regeneration. Cells 2020, 9, 1157. [Google Scholar] [CrossRef]
- Harrell, C.R. Therapeutic Potential of d-MAPPS™ for Ocular Inflammatory Diseases and Regeneration of Injured Corneal and Retinal Tissue. Int. J. Mol. Sci. 2022, 23, 13528. [Google Scholar] [CrossRef]
- Hachana, S.; Larrivée, B. TGF-β Superfamily Signaling in the Eye: Implications for Ocular Pathologies. Cells 2022, 11, 2336. [Google Scholar] [CrossRef]
- Przywara, D.; Petniak, A.; Gil-Kulik, P. Optimizing Mesenchymal Stem Cells for Regenerative Medicine: Influence of Diabetes, Obesity, Autoimmune, and Inflammatory Conditions on Therapeutic Efficacy: A Review. Med. Sci. Monit. 2024, 30, e945331. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Wu, Z.; Zhao, X.; Zhu, X.; An, Q.; Wang, Y.; Zhao, J.; Su, Y.; Yang, B.; Xu, K.; et al. Immunomodulatory effects of umbilical mesenchymal stem cell-derived exosomes on CD4+ T cells in patients with primary Sjögren’s syndrome. Inflammopharmacology 2023, 31, 1823–1838. [Google Scholar] [CrossRef] [PubMed]
- Sahu, A.; Foulsham, W.; Amouzegar, A.; Mittal, S.K.; Chauhan, S.K. The therapeutic application of mesenchymal stem cells at the ocular surface. Ocul. Surf. 2019, 17, 198–207. [Google Scholar] [CrossRef]
- He, J.G.; Li, B.B.; Zhou, L.; Yan, D.; Xie, Q.L.; Zhao, W. Indoleamine 2,3-dioxgenase-transfected mesenchymal stem cells suppress heart allograft rejection by increasing the production and activity of dendritic cells and regulatory T cells. J. Investig. Med. 2020, 68, 728–737. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Xing, Y.; Gan, Y.; He, J.; Hua, H. Labial gland-derived mesenchymal stem cells and their exosomes ameliorate murine Sjögren’s syndrome by modulating the balance of Treg and Th17 cells. Stem Cell Res. Ther. 2021, 12, 478. [Google Scholar] [CrossRef]
- Chen, K.; Li, Y.; Zhang, X.; Ullah, R.; Tong, J.; Shen, Y. The role of the PI3K/AKT signalling pathway in the corneal epithelium: Recent updates. Cell Death Dis. 2022, 13, 513. [Google Scholar] [CrossRef]
- Villatoro, A.J.; Fernández, V.; Claros, S.; Alcoholado, C.; Cifuentes, M.; Merayo-Lloves, J.; Andrades, J.A.; Becerra, J. Regenerative Therapies in Dry Eye Disease: From Growth Factors to Cell Therapy. Int. J. Mol. Sci. 2017, 18, 2264. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harrell, C.R.; Djonov, V.; Volarevic, A.; Arsenijevic, A.; Volarevic, V. Molecular Mechanisms Responsible for Mesenchymal Stem Cell-Dependent Attenuation of Tear Hyperosmolarity and Immune Cell-Driven Inflammation in the Eyes of Patients with Dry Eye Disease. Diseases 2024, 12, 269. https://doi.org/10.3390/diseases12110269
Harrell CR, Djonov V, Volarevic A, Arsenijevic A, Volarevic V. Molecular Mechanisms Responsible for Mesenchymal Stem Cell-Dependent Attenuation of Tear Hyperosmolarity and Immune Cell-Driven Inflammation in the Eyes of Patients with Dry Eye Disease. Diseases. 2024; 12(11):269. https://doi.org/10.3390/diseases12110269
Chicago/Turabian StyleHarrell, Carl Randall, Valentin Djonov, Ana Volarevic, Aleksandar Arsenijevic, and Vladislav Volarevic. 2024. "Molecular Mechanisms Responsible for Mesenchymal Stem Cell-Dependent Attenuation of Tear Hyperosmolarity and Immune Cell-Driven Inflammation in the Eyes of Patients with Dry Eye Disease" Diseases 12, no. 11: 269. https://doi.org/10.3390/diseases12110269
APA StyleHarrell, C. R., Djonov, V., Volarevic, A., Arsenijevic, A., & Volarevic, V. (2024). Molecular Mechanisms Responsible for Mesenchymal Stem Cell-Dependent Attenuation of Tear Hyperosmolarity and Immune Cell-Driven Inflammation in the Eyes of Patients with Dry Eye Disease. Diseases, 12(11), 269. https://doi.org/10.3390/diseases12110269