Association Between the rs13306703 and rs8192288 Variants of the SOD3 Gene and Breast Cancer and an In Silico Analysis of the Variants’ Impact
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Variant Analysis
2.3. In Silico Analysis
2.3.1. Prediction of the Regulatory Role of the Analyzed Variants
2.3.2. Analysis of SOD3 Expression in BC
2.4. Statistical Analysis
3. Results
3.1. General Characteristics of the Study Groups
3.2. Genotype Analysis of rs13306703 and rs8192288 Variants of SOD3
3.3. In Silico Analysis
3.3.1. SOD3 Expression in BC
3.3.2. Regulatory Role of the Analyzed Variants
3.3.3. Regulatory Pathway of the rs13306703 and rs8192288 Variants of the SOD3 Gene
4. Discussion
In Silico Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Cancer Observatory. International Agency for Research on Cancer. Available online: https://gco.iarc.fr/ (accessed on 8 May 2024).
- Cohen, S.Y.; Stoll, C.R.; Anandarajah, A.; Doering, M.; Colditz, G.A. Modifiable risk factors in women at high risk of breast cancer: A systematic review. Breast Cancer Res. 2023, 25, 45. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Obeagu, E.I.; Obeagu, G.U. Breast cancer: A review of risk factors and diagnosis. Medicine 2024, 103, e36905. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Forcados, G.E.; James, D.B.; Sallau, A.B.; Muhammad, A.; Mabeta, P. Oxidative Stress and Carcinogenesis: Potential of Phytochemicals in Breast Cancer Therapy. Nutr. Cancer. 2017, 69, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Jelic, M.D.; Mandic, A.D.; Maricic, S.M.; Srdjenovic, B.U. Oxidative stress and its role in cancer. J. Cancer Res. Ther. 2021, 17, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Sateesh, R.; Rao Bitla, A.R.; Budugu, S.R.; Mutheeswariah, Y.; Narendra, H.; Phaneedra, B.V.; Lakshmi, A.Y. Oxidative stress in relation to obesity in breast cancer. Indian. J. Cancer 2019, 56, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Farahzadi, R.; Valipour, B.; Fathi, E.; Pirmoradi, S.; Molavi, O.; Montazersaheb, S.; Sanaat, Z. Oxidative stress regulation and related metabolic pathways in epithelial-mesenchymal transition of breast cancer stem cells. Stem Cell Res. Ther. 2023, 14, 342. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moloney, J.N.; Cotter, T.G. ROS signalling in the biology of cancer. Semin. Cell Dev. Biol. 2018, 80, 50–64. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, U.S.; Tan, B.W.Q.; Vellayappan, B.A.; Jeyasekharan, A.D. ROS and the DNA damage response in cancer. Redox Biol. 2019, 25, 101084. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ismail, T.; Kim, Y.; Lee, H.; Lee, D.S.; Lee, H.S. Interplay Between Mitochondrial Peroxiredoxins and ROS in Cancer Development and Progression. Int. J. Mol. Sci. 2019, 20, 4407. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bel’skaya, L.V.; Dyachenko, E.I. Oxidative Stress in Breast Cancer: A Biochemical Map of Reactive Oxygen Species Production. Curr. Issues Mol. Biol. 2024, 46, 4646–4687. [Google Scholar] [CrossRef]
- Fukai, T.; Ushio-Fukai, M. Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxid. Redox Signal. 2011, 15, 1583–1606. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qin, Z.; Reszka, K.J.; Fukai, T.; Weintraub, N.L. Extracellular superoxide dismutase (ecSOD) in vascular biology: An update on exogenous gene transfer and endogenous regulators of ecSOD. Transl. Res. 2008, 151, 68–78. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- O’Leary, B.R.; Carroll, R.S.; Steers, G.J.; Hrabe, J.; Domann, F.E.; Cullen, J.J. Impact of EcSOD Perturbations in Cancer Progression. Antioxidants 2021, 10, 1219. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harrison, P.W.; Amode, M.R.; Austine-Orimoloye, O.; Azov, A.G.; Barba, M.; Barnes, I.; Becker, A.; Bennett, R.; Berry, A.; Bhai, J.; et al. Ensembl 2024. Nucleic Acids Res. 2024, 52, D891–D899. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pereira, G.R.C.; Da Silva, A.N.R.; Do Nascimento, S.S.; De Mesquita, J.F. In silico analysis and molecular dynamics simulation of human superoxide dismutase 3 (SOD3) genetic variants. J. Cell Biochem. 2019, 120, 3583–3598. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yang, S.; Xu, H.; Liu, D.; Zhang, Y.; Wang, G. Superoxide Dismutase Gene Polymorphism is Associated With Ischemic Stroke Risk in the China Dali Region Han Population. Neurologist 2021, 26, 27–31. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.; Lu, X.; Zhang, Y.; Zhao, D.; Gong, H.; Du, Y.; Sun, H. The Effect of Extracellular Superoxide Dismutase (SOD3) Gene in Lung Cancer. Front. Oncol. 2022, 12, 722646. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oo, M.W.; Kawai, H.; Eain, H.S.; Soe, Y.; Takabatake, K.; Sanou, S.; Shan, Q.; Inada, Y.; Fujii, M.; Fukuhara, Y.; et al. SOD3 Expression in Tumor Stroma Provides the Tumor Vessel Maturity in Oral Squamous Cell Carcinoma. Biomedicines 2022, 10, 2729. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mira, E.; Carmona-Rodríguez, L.; Pérez-Villamil, B.; Casas, J.; Fernández-Aceñero, M.J.; Martínez-Rey, D.; Martín-González, P.; Heras-Murillo, I.; Paz-Cabezas, M.; Tardáguila, M.; et al. SOD3 improves the tumor response to chemotherapy by stabilizing endothelial HIF-2α. Nat. Commun. 2018, 9, 575. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Parascandolo, A.; Rappa, F.; Cappello, F.; Kim, J.; Cantu, D.A.; Chen, H.; Mazzoccoli, G.; Hematti, P.; Castellone, M.D.; Salvatore, M.; et al. Extracellular Superoxide Dismutase Expression in Papillary Thyroid Cancer Mesenchymal Stem/Stromal Cells Modulates Cancer Cell Growth and Migration. Sci. Rep. 2017, 20, 41416. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Datkhile, K.D.; Gudur, A.; Gudur, R.A.; Patil, M.N.; Durgawale, P.P.; Deshmukh, V.N.; Jagdale, N.J. Polymorphism in Superoxide Dismutase, Catalase Genes and Their Role in Cervical Cancer Susceptibility among Rural Population of Maharashtra: Findings from A Hospital based Case Control Study. Indian. J. Forensic Med. Toxicol. 2020, 14, 366–371. [Google Scholar] [CrossRef]
- Bauer, S.R.; Richman, E.L.; Sosa, E.; Weinberg, V.; Song, X.; Witte, J.S.; Carroll, P.R.; Chan, J.M. Antioxidant and vitamin E transport genes and risk of high-grade prostate cancer and prostate cancer recurrence. Prostate 2013, 73, 1786–1795. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, P.; Zhao, L.; Zou, P.; Lu, A.; Liu, N.; Yan, W.; Kang, C.; Fu, Z.; You, Y.; Jiang, T. Genetic oxidative stress variants and glioma risk in a Chinese population: A hospital-based case-control study. BMC Cancer 2012, 12, 617. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rodrigues, P.; de Marco, G.; Furriol, J.; Mansego, M.L.; Pineda-Alonso, M.; Gonzalez-Neira, A.; Martin-Escudero, J.C.; Benitez, J.; Lluch, A.; Chaves, F.J.; et al. Oxidative stress in susceptibility to breast cancer: Study in Spanish population. BMC Cancer 2014, 14, 861. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sørheim, I.C.; DeMeo, D.L.; Washko, G.; Litonjua, A.; Sparrow, D.; Bowler, R.; Bakke, P.; Pillai, S.G.; Coxson, H.O.; Lomas, D.A.; et al. Polymorphisms in the superoxide dismutase-3 gene are associated with emphysema in COPD. COPD 2010, 7, 262–268. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, P.; Philippot, Q.; Ren, W.; Lei, W.T.; Li, J.; Stenson, P.D.; Palacín, P.S.; Colobran, R.; Boisson, B.; Zhang, S.Y.; et al. Genome-wide detection of human variants that disrupt intronic branchpoints. Proc. Natl. Acad. Sci. USA 2022, 119, e2211194119. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moles-Fernández, A.; Domènech-Vivó, J.; Tenés, A.; Balmaña, J.; Diez, O.; Gutiérrez-Enríquez, S. Role of Splicing Regulatory Elements and In Silico Tools Usage in the Identification of Deep Intronic Splicing Variants in Hereditary Breast/Ovarian Cancer Genes. Cancers 2021, 13, 3341. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Canson, D.; Glubb, D.; Spurdle, A.B. Variant effect on splicing regulatory elements, branchpoint usage, and pseudoexonization: Strategies to enhance bioinformatic prediction using hereditary cancer genes as exemplars. Hum. Mutat. 2020, 41, 1705–1721, Erratum in: Hum Mutat. 2022, 43, 2328. [Google Scholar] [CrossRef] [PubMed]
- Man, J.C.K.; Bosada, F.M.; Scholman, K.T.; Offerhaus, J.A.; Walsh, R.; van Duijvenboden, K.; van Eif, V.W.W.; Bezzina, C.R.; Verkerk, A.O.; Boukens, B.J.; et al. Variant Intronic Enhancer Controls SCN10A-short Expression and Heart Conduction. Circulation 2021, 144, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Zhao, N.; Spragins, E.; Kagda, M.S.; Li, M.; Assis, P.; Jolanki, O.; Luo, Y.; Cherry, J.M.; Boyle, A.P.; et al. Annotating and prioritizing human non-coding variants with RegulomeDB v.2. Nat. Genet. 2023, 55, 724–726. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ward, L.D.; Kellis, M. HaploReg: A resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012, 40, D930–D934. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Goldman, M.J.; Craft, B.; Hastie, M.; Repečka, K.; McDade, F.; Kamath, A.; Banerjee, A.; Luo, Y.; Rogers, D.; Brooks, A.N.; et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. 2020, 38, 675–678. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tang, G.; Cho, M.; Wang, X. OncoDB: An interactive online database for analysis of gene expression and viral infection in cancer. Nucleic Acids Res. 2022, 50, D1334–D1339. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shi, Y.Y.; He, L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005, 15, 97–98, Erratum in Cell Res. 2023, 10, 97–80. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Jackson, B.; Gondara, L.; Speers, C.; Diocee, R.; Nichol, A.M.; Lohrisch, C.; Gelmon, K.A. Does age affect outcome with breast cancer? Breast 2023, 70, 25–31. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martínez-Rey, D.; Carmona-Rodríguez, L.; Fernández-Aceñero, M.J.; Mira, E.; Mañes, S. Extracellular Superoxide Dismutase, the Endothelial Basement Membrane, and the WNT Pathway: New Players in Vascular Normalization and Tumor Infiltration by T-Cells. Front. Immunol. 2020, 11, 579552. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jayatilleke, K.M.; Hulett, M.D. Heparanase and the hallmarks of cancer. J. Transl. Med. 2020, 18, 453. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Naganuma, T.; Nakayama, T.; Sato, N.; Fu, Z.; Soma, M.; Aoi, N.; Hinohara, S.; Doba, N.; Usami, R. Association of extracellular superoxide dismutase gene with cerebral infarction in women: A haplotype-based case-control study. Hereditas 2008, 145, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Naganuma, T.; Nakayama, T.; Sato, N.; Fu, Z.; Soma, M.; Aoi, N.; Usami, R. A haplotype-based case-control study examining human extracellular superoxide dismutase gene and essential hypertension. Hypertens. Res. 2008, 31, 1533–1540. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wu, Y.; Zhang, L.; Yuan, W.; Yan, L.; Fan, S.; Lian, Y.; Zhu, X.; Gao, J.; Zhao, J.; et al. Comparison and development of machine learning tools for the prediction of chronic obstructive pulmonary disease in the Chinese population. J. Transl. Med. 2020, 18, 146. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rajaraman, P.; Hutchinson, A.; Rothman, N.; Black, P.M.; Fine, H.A.; Loeffler, J.S.; Selker, R.G.; Shapiro, W.R.; Linet, M.S.; Inskip, P.D. Oxidative response gene polymorphisms and risk of adult brain tumors. Neuro Oncol. 2008, 10, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Marginean, C.; Streata, I.; Ioana, M.; Marginean, O.M.; Padureanu, V.; Saftoiu, A.; Petrescu, I.; Tudorache, S.; Tica, O.S.; Petrescu, F. Assessment of Oxidative Stress Genes SOD2 and SOD3 Polymorphisms Role in Human Colorectal Cancer. Curr. Health Sci. J. 2016, 42, 356–358. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eftekhari, A.; Peivand, Z.; Saadat, I.; Saadat, M. Association between Genetic Polymorphisms in Superoxide Dismutase Gene Family and Risk of Gastric Cancer. Pathol. Oncol. Res. 2020, 26, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Gallegos-Arreola, M.P.; Garibaldi-Ríos, A.F.; Figuera, L.E.; Salas-Aragón, A.; Gómez-Meda, B.C.; Zúñiga-González, G.M.; Delgado-Saucedo, J.I.; Rivera-Cameras, A.; Dávalos-Rodriguez, I.P.; Ruiz-Ramírez, A.V.; et al. Variants rs2758346, rs5746094, and rs2758331 of SOD2 gene: Association study with breast cancer in a Mexican population and their analysis in silico. Eur. Rev. Med. Pharmacol. Sci. 2024, 28, 1163–1177. [Google Scholar] [CrossRef] [PubMed]
- Shima, T.; Mizokami, A.; Miyagi, T.; Kawai, K.; Izumi, K.; Kumaki, M.; Ofude, M.; Zhang, J.; Keller, E.T.; Namiki, M. Down-regulation of calcium/calmodulin-dependent protein kinase kinase 2 by androgen deprivation induces castration-resistant prostate cancer. Prostate 2012, 72, 1789–1801. [Google Scholar] [CrossRef] [PubMed]
- Gallegos-Arreola, M.P.; Ramírez-Patiño, R.; Sánchez-López, J.Y.; Zúñiga-González, G.M.; Figuera, L.E.; Delgado-Saucedo, J.I.; Gómez-Meda, B.C.; Rosales-Reynoso, M.A.; Puebla-Pérez, A.M.; Lemus-Varela, M.L.; et al. SOD2 Gene Variants (rs4880 and rs5746136) and Their Association with Breast Cancer Risk. Curr. Issues Mol. Biol. 2022, 44, 5221–5233. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Griess, B.; Tom, E.; Domann, F.; Teoh-Fitzgerald, M. Extracellular superoxide dismutase and its role in cancer. Free Radic. Biol. Med. 2017, 112, 464–479. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Parascandolo, A.; Laukkanen, M.O. SOD3 Is a Non-Mutagenic Growth Regulator Affecting Cell Migration and Proliferation Signal Transduction. Antioxidants 2021, 10, 635. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sah, S.K.; Agrahari, G.; Kim, T.Y. Insights into superoxide dismutase 3 in regulating biological and functional properties of mesenchymal stem cells. Cell Biosci. 2020, 10, 22. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Singh, B.; Bhat, H.K. Superoxide dismutase 3 is induced by antioxidants, inhibits oxidative DNA damage and is associated with inhibition of estrogen-induced breast cancer. Carcinogenesis 2012, 33, 2601–2610. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Messerli, S.M.; Schaefer, A.M.; Zhuang, Y.; Soltys, B.J.; Keime, N.; Jin, J.; Ma, L.; Hsia, C.J.C.; Miskimins, W.K. Use of Antimetastatic SOD3-Mimetic Albumin as a Primer in Triple Negative Breast Cancer. J. Oncol. 2019, 2019, 3253696. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, C.A.; Harrell, J.C.; Iwanaga, R.; Jedlicka, P.; Ford, H.L. Vascular endothelial growth factor C promotes breast cancer progression via a novel antioxidant mechanism that involves regulation of superoxide dismutase 3. Breast Cancer Res. 2014, 16, 462. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Griess, B.; Klinkebiel, D.; Kueh, A.; Desler, M.; Cowan, K.; Fitzgerald, M.; Teoh-Fitzgerald, M. Association of SOD3 promoter DNA methylation with its down-regulation in breast carcinomas. Epigenetics 2020, 15, 1325–1335. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Strom, A.; Kaul, K.; Brüggemann, J.; Ziegler, I.; Rokitta, I.; Püttgen, S.; Szendroedi, J.; Müssig, K.; Roden, M.; Ziegler, D. Lower serum extracellular superoxide dismutase levels are associated with polyneuropathy in recent-onset diabetes. Exp. Mol. Med. 2017, 49, e394. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Juliachs, M.; Pujals, M.; Bellio, C.; Meo-Evoli, N.; Duran, J.M.; Zamora, E.; Parés, M.; Suñol, A.; Méndez, O.; Sánchez-Pla, A.; et al. Circulating SOD2 Is a Candidate Response Biomarker for Neoadjuvant Therapy in Breast Cancer. Cancers 2022, 14, 3858. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bernardo, G.M.; Keri, R.A. FOXA1: A transcription factor with parallel functions in development and cancer. Biosci. Rep. 2012, 32, 113–130. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hurtado, A.; Holmes, K.A.; Ross-Innes, C.S.; Schmidt, D.; Carroll, J.S. FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat. Genet. 2011, 43, 27–33. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, M.; Zhang, Y.; Jiao, X.; Lai, L.; Qian, Y.; Sun, B.; Yang, W. Identification and validation of immune related core transcription factors GTF2I in NAFLD. PeerJ 2022, 10, e13735. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van der Raadt, J.; van Gestel, S.H.C.; Nadif, K.N.; Albers, C.A. ONECUT transcription factors induce neuronal characteristics and remodel chromatin accessibility. Nucleic Acids Res. 2019, 47, 5587–5602. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- LCORL Ligand Dependent Nuclear Receptor Corepressor Like [Homo Sapiens (Human)] [Internet]; National Library of Medicine (US), National Center for Biotechnology Information: Bethesda, MD, USA, 2004. Available online: https://www.ncbi.nlm.nih.gov/gene/ (accessed on 14 May 2024).
- Dessen, P.; Atlas Genet Cytogenet Oncol Haematol. 1 November 2014. Available online: http://atlasgeneticsoncology.org/gene/76296/znf629-(zinc-finger-protein-629) (accessed on 21 July 2024).
- Cibis, H.; Biyanee, A.; Dörner, W.; Mootz, H.D.; Klempnauer, K.H. Characterization of the zinc finger proteins ZMYM2 and ZMYM4 as novel B-MYB binding proteins. Sci. Rep. 2020, 10, 8390. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, R.; Xu, Q.; Wang, C.; Tian, K.; Wang, H.; Ji, X. Multiomic analysis of cohesin reveals that ZBTB transcription factors contribute to chromatin interactions. Nucleic Acids Res. 2023, 51, 6784–6805. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, Y.; Yang, Q. The roles of EZH2 in cancer and its inhibitors. Med. Oncol. 2023, 40, 167. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Verma, A.; Singh, A.; Singh, M.P.; Nengroo, M.A.; Saini, K.K.; Satrusal, S.R.; Khan, M.A.; Chaturvedi, P.; Sinha, A.; Meena, S.; et al. EZH2-H3K27me3 mediated KRT14 upregulation promotes TNBC peritoneal metastasis. Nat. Commun. 2022, 13, 7344. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaprio, H.; Heuser, V.D.; Orte, K.; Tukiainen, M.; Leivo, I.; Gardberg, M. Expression of Transcription Factor CREM in Human Tissues. J. Histochem. Cytochem. 2021, 69, 495–509. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dehingia, B.; Milewska, M.; Janowski, M.; Pękowska, A. CTCF shapes chromatin structure and gene expression in health and disease. EMBO Rep. 2022, 23, e55146. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gou, R.; Li, X.; Dong, H.; Hu, Y.; Liu, O.; Liu, J.; Lin, B. RAD21 Confers Poor Prognosis and Affects Ovarian Cancer Sensitivity to Poly(ADP-Ribose)Polymerase Inhibitors Through DNA Damage Repair. Front. Oncol. 2022, 12, 936550. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Issac, J.; Raveendran, P.S.; Das, A.V. RFX1: A promising therapeutic arsenal against cancer. Cancer Cell Int. 2021, 21, 253. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Zhou, S.; Xu, H.; Liao, L.; Shen, H.; Du, P.; Zheng, X. ATM-ESCO2-SMC3 axis promotes 53BP1 recruitment in response to DNA damage and safeguards genome integrity by stabilizing cohesin complex. Nucleic Acids Res. 2023, 51, 7376–7391. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, J.; Zhang, L.; Jiang, Z.; Ge, C.; Zhao, F.; Jiang, J.; Tian, H.; Chen, T.; Xie, H.; Cui, Y.; et al. TCF12 promotes the tumorigenesis and metastasis of hepatocellular carcinoma via upregulation of CXCR4 expression. Theranostics 2019, 9, 5810–5827. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- National Library of Medicine, NHLH2 Nescient Helix-Loop-Helix 2 Gene ID: 4808. Available online: https://www.ncbi.nlm.nih.gov/gene/4808 (accessed on 21 July 2024).
- Yohe, M.E.; Gryder, B.E.; Shern, J.F.; Song, Y.K.; Chou, H.C.; Sindiri, S.; Mendoza, A.; Patidar, R.; Zhang, X.; Guha, R.; et al. MEK inhibition induces MYOG and remodels super-enhancers in RAS-driven rhabdomyosarcoma. Sci. Transl. Med. 2018, 10, eaan4470. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shang, Y.; Jiang, T.; Ran, L.; Hu, W.; Wu, Y.; Ye, J.; Peng, Z.; Chen, L.; Wang, R. TET2-BCLAF1 transcription repression complex epigenetically regulates the expression of colorectal cancer gene Ascl2 via methylation of its promoter. J. Biol. Chem. 2022, 298, 102095. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fishilevich, S.; Nudel, R.; Rappaport, N.; Hadar, R.; Plaschkes, I.; Iny Stein, T.; Rosen, N.; Kohn, A.; Twik, M.; Safran, M.; et al. GeneHancer: Genome-wide integration of enhancers and target genes in GeneCards. Database 2017, 2017, bax028. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Floriou-Servou, A.; von Ziegler, L.; Waag, R.; Schläppi, C.; Germain, P.L.; Bohacek, J. The Acute Stress Response in the Multiomic Era. Biol. Psychiatry 2021, 89, 1116–1126. [Google Scholar] [CrossRef] [PubMed]
BC Patients (n = 386) | Controls (n = 357) | p Value | ||||
---|---|---|---|---|---|---|
Age (years, average ± SD) | 50.32 ± 12.93 | 50.23 ± 12.64 | 0.925 * | |||
n | % | n | % | |||
≤49 years | 170 | 44.0 | (157) | 44.0 | 1.0 ** | |
≥50 years | 216 | 56.0 | (200) | 56.0 | ||
Hormonal status | premenopause | 174 | 45.0 | |||
menopause | 212 | 55.0 | ||||
Tumor localization | unilateral | 363 | 94.0 | |||
bilateral | 23 | 6.0 | ||||
Histology (adenocarcinoma) | ductal | 355 | 92.0 | |||
Lobular | 27 | 7.0 | ||||
Mixed | 4 | 1.0 | ||||
Stage | In situ | 11 | 3.0 | |||
I | 39 | 10.0 | ||||
II | 154 | 40.0 | ||||
III | 120 | 31.0 | ||||
IV | 62 | 16.0 | ||||
Molecular Type | Luminar A | 124 | 32.0 | |||
Luminar B | 88 | 23.0 | ||||
Her-2 | 51 | 13.0 | ||||
Triple-negative | 123 | 32.0 | ||||
Ki67 | ≥20% | 263 | 68.0 | |||
<20% | 123 | 32.0 | ||||
Chemotherapy status | Response | 222 | 58.0 | |||
No response | 164 | 42.0 *** | ||||
Toxicity | Gastric | 209 | 54.0 | |||
Hematologic | 56 | 15.0 | ||||
Both | 121 | 31.0 |
Variants | BC | Controls * | OR | 95% CI | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
rs13306703 | Model | Genotype | (n = 386) | % | (n = 255) | % | |||
CC | (158) | 41 | (92) | 36 | 1.0 | 1.0 | |||
CT | (117) | 30 | (122) | 48 | 0.46 | 0.33–0.63 | 0.0001 | ||
TT | (111) | 29 | (41) | 16 | 2.10 | (1.41–3.14) | 0.0001 | ||
Dominant | CC | (158) | 41 | (92) | 36 | ||||
TT + CT | (228) | 59 | (163) | 64 | 0.81 | (0.59–1.12) | 0.217 | ||
Recessive | TT | (111) | 38 | (41) | 23 | 2.10 | (1.41–3.14) | 0.0002 | |
CC + CT | (275) | 62 | (214) | 77 | |||||
Alleles | (2n = 772) | (2n = 510) | |||||||
Additive | 2.85 | 0.3994 | |||||||
Alleles | C | (433) | 0.560 | (306) | 0.600 | 0.86 | (0.67–1.06) | 0.165 | |
T | (339) | 0.440 | (204) | 0.400 | 1.17 | (0.93–1.47) | 0.165 | ||
rs8192288 | Genotype | (n = 386) | % | (n = 357) | % | ||||
GG | (238) | 62 | (239) | 67 | 1.0 | 1.0 | |||
GT | (112) | 29 | (106) | 30 | 0.96 | (0.70–1.32) | 0.903 | ||
TT | (36) | 9 | (12) | 3 | 2.95 | (1.51–5.77) | 0.001 | ||
Dominant | GG | (238) | 62 | (239) | 67 | ||||
TT + GT | (148) | 38 | (118) | 33 | 1.25 | (0.93–1.70) | 0.133 | ||
Recessive | TT | (36) | 9 | (12) | 3 | 2.95 | (1.51–5.77) | 0.001 | |
GG + GT | (350) | 91 | (345) | 97 | |||||
Additive | 1.40 | 0.0392 | |||||||
Alleles | (2n = 772) | (2n = 714) | |||||||
G | (588) | 0.762 | (584) | 0.182 | 0.71 | (0.55–0.91) | 0.009 | ||
T | (184) | 0.238 | (130) | 0.182 | 1.40 | (1.09–1.80) | 0.009 |
Variant | Genotype | Variable | OR | 95% CI | p-Value |
---|---|---|---|---|---|
rs13306703 | TT | Metastatic lymph nodes | 1.7 | 1.03–2.9 | 0.038 |
III-IV stage, and metastatic lymph nodes | 2.6 | 1.05–6.6 | 0.039 | ||
Luminal A, and metastatic lymph nodes | 1.7 | 1.03–2.9 | 0.039 | ||
Non-response to chemotherapy, and metastatic lymph nodes | 1.7 | 1.07–2.7 | 0.043 | ||
Ki-67 (≥20%), and the presence of DM | 3.0 | 1.2–4.7 | 0.018 | ||
rs8192288 | GT | Menopause status | 2.4 | 1.04–4.6 | 0.040 |
Luminal A, and menopause status | 2.4 | 1.04–4.6 | 0.040 | ||
III-IV stage and Ki-67 (≥20%) | 3.0 | 1.4–4.6 | 0.003 | ||
Estrogen receptor-positive, and non-response to chemotherapy | 2.0 | 1.02–4.2 | 0.043 | ||
TT | DM | 2.2 | 1.03–4.7 | 0.040 | |
GTTT | Luminal A, and DM | 2.9 | 1.37–4.3 | 0.027 | |
DM, and non-response to chemotherapy | 2.3 | 1.1–3.7 | 0.021 |
Haplotype | BC (2n = 740) | Controls (2n = 357) | |||||
---|---|---|---|---|---|---|---|
rs13306703 | rs8192288 | (n) | % | (n) | % | OR 95%[CI] | p-Value |
C | G | (310) | 42 | (161) | 45 | 1 | 1 |
C | T | (105) | 14 | (57) | 16 | 0.87 [0.61~1.23] | 0.504 |
T | G | (262) | 35 | (132) | 37 | 0.93 [0.72~1.21] | 0.683 |
T | T | (63) | 9 | (8) | 2 | 4.0 [1.92~8.59] | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallegos-Arreola, M.P.; Garibaldi-Ríos, A.F.; Magaña-Torres, M.T.; Figuera, L.E.; Gómez-Meda, B.C.; Zúñiga-González, G.M.; Puebla-Pérez, A.M.; Carrillo-Dávila, I.A.; Rosales-Reynoso, M.A.; Dávalos-Rodríguez, I.P.; et al. Association Between the rs13306703 and rs8192288 Variants of the SOD3 Gene and Breast Cancer and an In Silico Analysis of the Variants’ Impact. Diseases 2024, 12, 276. https://doi.org/10.3390/diseases12110276
Gallegos-Arreola MP, Garibaldi-Ríos AF, Magaña-Torres MT, Figuera LE, Gómez-Meda BC, Zúñiga-González GM, Puebla-Pérez AM, Carrillo-Dávila IA, Rosales-Reynoso MA, Dávalos-Rodríguez IP, et al. Association Between the rs13306703 and rs8192288 Variants of the SOD3 Gene and Breast Cancer and an In Silico Analysis of the Variants’ Impact. Diseases. 2024; 12(11):276. https://doi.org/10.3390/diseases12110276
Chicago/Turabian StyleGallegos-Arreola, Martha Patricia, Asbiel Felipe Garibaldi-Ríos, María Teresa Magaña-Torres, Luis E. Figuera, Belinda Claudia Gómez-Meda, Guillermo Moisés Zúñiga-González, Ana María Puebla-Pérez, Irving Alejandro Carrillo-Dávila, Mónica Alejandra Rosales-Reynoso, Ingrid Patricia Dávalos-Rodríguez, and et al. 2024. "Association Between the rs13306703 and rs8192288 Variants of the SOD3 Gene and Breast Cancer and an In Silico Analysis of the Variants’ Impact" Diseases 12, no. 11: 276. https://doi.org/10.3390/diseases12110276
APA StyleGallegos-Arreola, M. P., Garibaldi-Ríos, A. F., Magaña-Torres, M. T., Figuera, L. E., Gómez-Meda, B. C., Zúñiga-González, G. M., Puebla-Pérez, A. M., Carrillo-Dávila, I. A., Rosales-Reynoso, M. A., Dávalos-Rodríguez, I. P., Delgado-Saucedo, J. I., & López-Monroy, M. U. (2024). Association Between the rs13306703 and rs8192288 Variants of the SOD3 Gene and Breast Cancer and an In Silico Analysis of the Variants’ Impact. Diseases, 12(11), 276. https://doi.org/10.3390/diseases12110276