Occupational Physical Activity and Regular Exercise Are Inversely Correlated with Thyroid Function in Patients with Hashimoto’s Thyroiditis
Abstract
:1. Introduction
2. Materials and Methods
2.1. CROHT Biobank
2.2. Physical Activity
2.3. Ethics
2.4. Statistical Analyses
3. Results
3.1. Results of Analysis of RE and Thyroid Function
3.2. Results of Analysis of OPA and Thyroid Function
3.3. Results of Analysis of Joint Effect of RE and OPA on TSH
4. Discussion
4.1. RE and Thyroid Function
4.2. OPA and Thyroid Function
4.3. Joint Effect of RE and OPA on TSH
4.4. Limitations and Advantages
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caturegli, P.; De Remigis, A.; Rose, N.R. Hashimoto thyroiditis: Clinical and diagnostic criteria. Autoimmun. Rev. 2014, 13, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, M.J. GWAS in autoimmune thyroid disease: Redefining our understanding of pathogenesis. Nat. Rev. Endocrinol. 2013, 9, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Almandoz, J.P.; Gharib, H. Hypothyroidism: Etiology, diagnosis, and management. Med. Clin. N. Am. 2012, 96, 203–221. [Google Scholar] [CrossRef]
- Ragusa, F.; Fallahi, P.; Elia, G.; Gonnella, D.; Paparo, S.R.; Giusti, C.; Churilov, L.P.; Ferrari, S.M.; Antonelli, A. Hashimotos’ thyroiditis: Epidemiology, pathogenesis, clinic and therapy. Best Pract. Res. Clin. Endocrinol. Metab. 2019, 33, 101367. [Google Scholar] [CrossRef]
- Duntas, L.H. Environmental factors and thyroid autoimmunity. Ann. Endocrinol. 2011, 72, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Vanderpump, M.P.; Tunbridge, W.M.; French, J.M.; Appleton, D.; Bates, D.; Clark, F.; Grimley Evans, J.; Hasan, D.M.; Rodgers, H.; Tunbridge, F.; et al. The incidence of thyroid disorders in the community: A twenty-year follow-up of the Whickham Survey. Clin. Endocrinol. 1995, 43, 55–68. [Google Scholar] [CrossRef]
- Pearce, S.H.; Brabant, G.; Duntas, L.H.; Monzani, F.; Peeters, R.P.; Razvi, S.; Wemeau, J.L. 2013 ETA Guideline: Management of Subclinical Hypothyroidism. Eur. Thyroid J. 2013, 2, 215–228. [Google Scholar] [CrossRef]
- Chaker, L.; Bianco, A.C.; Jonklaas, J.; Peeters, R.P. Hypothyroidism. Lancet 2017, 390, 1550–1562. [Google Scholar] [CrossRef]
- Booth, F.W.; Roberts, C.K.; Laye, M.J. Lack of exercise is a major cause of chronic diseases. Compr. Physiol. 2012, 2, 1143–1211. [Google Scholar] [CrossRef]
- Tanriverdi, A.; Ozcan Kahraman, B.; Ozsoy, I.; Bayraktar, F.; Ozgen Saydam, B.; Acar, S.; Ozpelit, E.; Akdeniz, B.; Savci, S. Physical activity in women with subclinical hypothyroidism. J. Endocrinol. Investig. 2019, 42, 779–785. [Google Scholar] [CrossRef]
- Lankhaar, J.A.C.; Kemler, E.; Hofstetter, H.; Collard, D.C.M.; Zelissen, P.M.J.; Stubbe, J.H.; Backx, F.J.G. Physical activity, sports participation and exercise-related constraints in adult women with primary hypothyroidism treated with thyroid hormone replacement therapy. J. Sports Sci. 2021, 39, 2493–2502. [Google Scholar] [CrossRef] [PubMed]
- Lankhaar, J.A.; de Vries, W.R.; Jansen, J.A.; Zelissen, P.M.; Backx, F.J. Impact of overt and subclinical hypothyroidism on exercise tolerance: A systematic review. Res. Q. Exerc. Sport 2014, 85, 365–389. [Google Scholar] [CrossRef] [PubMed]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar] [PubMed]
- Skender, S.; Ose, J.; Chang-Claude, J.; Paskow, M.; Bruhmann, B.; Siegel, E.M.; Steindorf, K.; Ulrich, C.M. Accelerometry and physical activity questionnaires-a systematic review. BMC Public Health 2016, 16, 515. [Google Scholar] [CrossRef]
- Howley, E.T. Type of activity: Resistance, aerobic and leisure versus occupational physical activity. Med. Sci. Sports Exerc. 2001, 33, S364–S369, discussion S419–S420. [Google Scholar] [CrossRef]
- Telesforo, P.; Procaccini, D.A.; Muscio, A.; Genua, G. Serum concentration of T3, T4, FT3, FT4, TSH during cycloergometer muscular exercise. Quad. Sclavo Diagn. 1986, 22, 115–120. [Google Scholar] [PubMed]
- Ciloglu, F.; Peker, I.; Pehlivan, A.; Karacabey, K.; Ilhan, N.; Saygin, O.; Ozmerdivenli, R. Exercise intensity and its effects on thyroid hormones. Neuro Endocrinol. Lett. 2005, 26, 830–834. [Google Scholar]
- Soria, M.; Anson, M.; Escanero, J.F. Correlation Analysis of Exercise-Induced Changes in Plasma Trace Element and Hormone Levels During Incremental Exercise in Well-Trained Athletes. Biol. Trace Elem. Res. 2016, 170, 55–64. [Google Scholar] [CrossRef]
- Simsch, C.; Lormes, W.; Petersen, K.G.; Baur, S.; Liu, Y.; Hackney, A.C.; Lehmann, M.; Steinacker, J.M. Training intensity influences leptin and thyroid hormones in highly trained rowers. Int. J. Sports Med. 2002, 23, 422–427. [Google Scholar] [CrossRef]
- Smallridge, R.C.; Whorton, N.E.; Burman, K.D.; Ferguson, E.W. Effects of exercise and physical fitness on the pituitary-thyroid axis and on prolactin secretion in male runners. Metabolism 1985, 34, 949–954. [Google Scholar] [CrossRef]
- Licata, G.; Scaglione, R.; Novo, S.; Dichiara, M.A.; Di Vincenzo, D. Behaviour of serum T3, rT3, TT4, FT4 and TSH levels after exercise on a bicycle ergometer in healthy euthyroid male young subjects. Boll. Soc. Ital. Biol. Sper. 1984, 60, 753–759. [Google Scholar] [PubMed]
- Schmid, P.; Wolf, W.; Pilger, E.; Schwaberger, G.; Pessenhofer, H.; Pristautz, H.; Leb, G. TSH, T3, rT3 and fT4 in maximal and submaximal physical exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1982, 48, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Hackney, A.C.; Kallman, A.; Hosick, K.P.; Rubin, D.A.; Battaglini, C.L. Thyroid hormonal responses to intensive interval versus steady-state endurance exercise sessions. Hormones 2012, 11, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Mastorakos, G.; Pavlatou, M. Exercise as a stress model and the interplay between the hypothalamus-pituitary-adrenal and the hypothalamus-pituitary-thyroid axes. Horm. Metab. Res. 2005, 37, 577–584. [Google Scholar] [CrossRef]
- Steinacker, J.M.; Brkic, M.; Simsch, C.; Nething, K.; Kresz, A.; Prokopchuk, O.; Liu, Y. Thyroid hormones, cytokines, physical training and metabolic control. Horm. Metab. Res. 2005, 37, 538–544. [Google Scholar] [CrossRef]
- Wu, K.; Zhou, Y.; Ke, S.; Huang, J.; Gao, X.; Li, B.; Lin, X.; Liu, X.; Liu, X.; Ma, L.; et al. Lifestyle is associated with thyroid function in subclinical hypothyroidism: A cross-sectional study. BMC Endocr. Disord. 2021, 21, 112. [Google Scholar] [CrossRef]
- Huang, Y.; Cai, L.; Zheng, Y.; Pan, J.; Li, L.; Zong, L.; Lin, W.; Liang, J.; Huang, H.; Wen, J.; et al. Association between lifestyle and thyroid dysfunction: A cross-sectional epidemiologic study in the She ethnic minority group of Fujian Province in China. BMC Endocr. Disord. 2019, 19, 83. [Google Scholar] [CrossRef]
- Klasson, C.L.; Sadhir, S.; Pontzer, H. Daily physical activity is negatively associated with thyroid hormone levels, inflammation, and immune system markers among men and women in the NHANES dataset. PLoS ONE 2022, 17, e0270221. [Google Scholar] [CrossRef]
- Ravaglia, G.; Forti, P.; Maioli, F.; Pratelli, L.; Vettori, C.; Bastagli, L.; Mariani, E.; Facchini, A.; Cucinotta, D. Regular moderate intensity physical activity and blood concentrations of endogenous anabolic hormones and thyroid hormones in aging men. Mech. Ageing Dev. 2001, 122, 191–203. [Google Scholar] [CrossRef]
- Ahn, N.; Kim, H.S.; Kim, K. Exercise training-induced changes in metabolic syndrome parameters, carotid wall thickness, and thyroid function in middle-aged women with subclinical hypothyroidism. Pflugers Arch. 2019, 471, 479–489. [Google Scholar] [CrossRef]
- Roa Duenas, O.H.; Koolhaas, C.; Voortman, T.; Franco, O.H.; Ikram, M.A.; Peeters, R.P.; Chaker, L. Thyroid Function and Physical Activity: A Population-Based Cohort Study. Thyroid 2021, 31, 870–875. [Google Scholar] [CrossRef] [PubMed]
- Brcic, L.; Baric, A.; Gracan, S.; Brekalo, M.; Kalicanin, D.; Gunjaca, I.; Torlak Lovric, V.; Tokic, S.; Radman, M.; Skrabic, V.; et al. Genome-wide association analysis suggests novel loci for Hashimoto’s thyroiditis. J. Endocrinol. Investig. 2019, 42, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Cvek, M.; Punda, A.; Brekalo, M.; Plosnic, M.; Baric, A.; Kalicanin, D.; Brcic, L.; Vuletic, M.; Gunjaca, I.; Torlak Lovric, V.; et al. Presence or severity of Hashimoto’s thyroiditis does not influence basal calcitonin levels: Observations from CROHT biobank. J. Endocrinol. Investig. 2022, 45, 597–605. [Google Scholar] [CrossRef]
- Cvek, M.; Kalicanin, D.; Baric, A.; Vuletic, M.; Gunjaca, I.; Torlak Lovric, V.; Skrabic, V.; Punda, A.; Boraska Perica, V. Vitamin D and Hashimoto’s Thyroiditis: Observations from CROHT Biobank. Nutrients 2021, 13, 2793. [Google Scholar] [CrossRef]
- Brady, A.O.; Straight, C.R.; Evans, E.M. Body composition, muscle capacity, and physical function in older adults: An integrated conceptual model. J. Aging Phys. Act. 2014, 22, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Milanovic, Z.; Pantelic, S.; Trajkovic, N.; Sporis, G.; Kostic, R.; James, N. Age-related decrease in physical activity and functional fitness among elderly men and women. Clin. Interv. Aging 2013, 8, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Westerstahl, M.; Jansson, E.; Barnekow-Bergkvist, M.; Aasa, U. Longitudinal changes in physical capacity from adolescence to middle age in men and women. Sci. Rep. 2018, 8, 14767. [Google Scholar] [CrossRef]
- Dutta, D.; Garg, A.; Khandelwal, D.; Kalra, S.; Mittal, S.; Chittawar, S. Thyroid Symptomatology across the Spectrum of Hypothyroidism and Impact of Levothyroxine Supplementation in Patients with Severe Primary Hypothyroidism. Indian J. Endocrinol. Metab. 2019, 23, 373–378. [Google Scholar] [CrossRef]
- Sharif, K.; Watad, A.; Bragazzi, N.L.; Lichtbroun, M.; Amital, H.; Shoenfeld, Y. Physical activity and autoimmune diseases: Get moving and manage the disease. Autoimmun. Rev. 2018, 17, 53–72. [Google Scholar] [CrossRef]
- Weyh, C.; Kruger, K.; Strasser, B. Physical Activity and Diet Shape the Immune System during Aging. Nutrients 2020, 12, 622. [Google Scholar] [CrossRef]
- Weetman, A.P. An update on the pathogenesis of Hashimoto’s thyroiditis. J. Endocrinol. Investig. 2021, 44, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Diaz, B.B.; Gonzalez, D.A.; Gannar, F.; Perez, M.C.R.; de Leon, A.C. Myokines, physical activity, insulin resistance and autoimmune diseases. Immunol. Lett. 2018, 203, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Metsios, G.S.; Moe, R.H.; Kitas, G.D. Exercise and inflammation. Best Pract. Res. Clin. Rheumatol. 2020, 34, 101504. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.K.; Lee, D.E.; Hwangbo, Y.; Lee, Y.J.; Kim, H.C.; Lee, E.K. Long Work Hours Are Associated with Hypothyroidism: A Cross-Sectional Study with Population-Representative Data. Thyroid 2020, 30, 1432–1439. [Google Scholar] [CrossRef]
- Magrini, A.; Pietroiusti, A.; Coppeta, L.; Babbucci, A.; Barnaba, E.; Papadia, C.; Iannaccone, U.; Boscolo, P.; Bergamaschi, E.; Bergamaschi, A. Shift work and autoimmune thyroid disorders. Int. J. Immunopathol. Pharmacol. 2006, 19, 31–36. [Google Scholar]
- Moon, S.H.; Lee, B.J.; Kim, S.J.; Kim, H.C. Relationship between thyroid stimulating hormone and night shift work. Ann. Occup. Environ. Med. 2016, 28, 53. [Google Scholar] [CrossRef]
- Tsatsoulis, A. The role of stress in the clinical expression of thyroid autoimmunity. Ann. N. Y. Acad. Sci. 2006, 1088, 382–395. [Google Scholar] [CrossRef]
- Mizokami, T.; Wu Li, A.; El-Kaissi, S.; Wall, J.R. Stress and thyroid autoimmunity. Thyroid 2004, 14, 1047–1055. [Google Scholar] [CrossRef]
- Holtermann, A.; Hansen, J.V.; Burr, H.; Sogaard, K.; Sjogaard, G. The health paradox of occupational and leisure-time physical activity. Br. J. Sports Med. 2012, 46, 291–295. [Google Scholar] [CrossRef]
- Prince, S.A.; Rasmussen, C.L.; Biswas, A.; Holtermann, A.; Aulakh, T.; Merucci, K.; Coenen, P. The effect of leisure time physical activity and sedentary behaviour on the health of workers with different occupational physical activity demands: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 100. [Google Scholar] [CrossRef]
- Hallman, D.M.; Birk Jorgensen, M.; Holtermann, A. On the health paradox of occupational and leisure-time physical activity using objective measurements: Effects on autonomic imbalance. PLoS ONE 2017, 12, e0177042. [Google Scholar] [CrossRef] [PubMed]
- Gates, L.S.; Leyland, K.M.; Sheard, S.; Jackson, K.; Kelly, P.; Callahan, L.F.; Pate, R.; Roos, E.M.; Ainsworth, B.; Cooper, C.; et al. Physical activity and osteoarthritis: A consensus study to harmonise self-reporting methods of physical activity across international cohorts. Rheumatol. Int. 2017, 37, 469–478. [Google Scholar] [CrossRef] [PubMed]
Less than an Hour | Between 1 and 2 h | Over 2 h | |
---|---|---|---|
Daily | 30 | 45 | 60 |
2–3 times a week | 10 | 15 | 20 |
Once a week | 4 | 6 | 8 |
Occasionally | 1 | 1.5 | 2 |
Parameter | ALL | OVERT | MILD |
---|---|---|---|
(N = 438) | (N = 203) | (N = 235) | |
Median (Q1–Q3) | Median (Q1–Q3) | Median (Q1–Q3) | |
Female, N (%) | 409 (93.38) | 185 (91.13) | 224 (95.32) |
Age, years | 38.45 (28.44–48.95) | 41.19 (31.46–50.94) | 35.72 (26.27–46.95) |
BMI, kg/m2 | 23.58 (20.83–26.89) | 23.97 (21.12–26.92) | 23.23 (20.76–26.65) |
TSH, mIU/L | 3.27 (1.74–5.55) | 3.34 (1.66–12.00) | 3.23 (1.82–4.71) |
T3, nmol/L | 1.60 (1.31–1.80) | 1.60 (1.30–1.80) | 1.70 (1.40–1.85) |
T4, nmol/L | 105.00 (89.15–118.00) | 103.00 (85.80–121.00) | 106.00 (91.60–116.80) |
fT4, pmol/L | 12.10 (10.20–13.20) | 12.10 (9.90–13.70) | 12.10 (10.90–13.10) |
TgAb, IU/mL | 134.50 (36.55–422.30) | 175.60 (49.30–576.05) | 123.00 (26.30–327.00) |
TPOAb, IU/mL | 202.00 (27.03–628.75) | 244.20 (63.15–881.00) | 156.00 (16.95–527.55) |
Thyroid volume, cm3 | 10.05 (7.34–14.25) | 9.92 (6.97–15.09) | 10.45 (7.72–13.25) |
Vitamin D, ng/mL | 19.50 (14.40–25.10) | 18.45 (13.90–23.47) | 20.90 (15.02–25.97) |
Occupational Physical Activity (OPA) | Recreational Exercise (RE) | |||||
---|---|---|---|---|---|---|
Phenotype | ALL (N = 438) | OVERT (N = 203) | MILD (N = 235) | ALL (N = 438) | OVERT (N = 203) | MILD (N = 235) |
r (p) | r (p) | r (p) | r (p) | r (p) | r (p) | |
TSH | 0.124 (0.014) | 0.183 (0.013) | 0.033 (0.629) | −0.007 (0.896) | −0.238 (0.001) | −0.018 (0.790) |
T3 | −0.079 (0.115) | −0.089 (0.228) | −0.052 (0.450) | −0.021 (0.684) | 0.066 (0.386) | −0.064 (0.361) |
T4 | −0.028 (0.575) | −0.086 (0.244) | 0.039 (0.571) | −0.051 (0.325) | 0.077 (0.310) | −0.093 (0.182) |
fT4 | −0.138 (0.006) | −0.265 (0.0002) | −0.043 (0.543) | −0.030 (0.560) | 0.075 (0.324) | 0.013 (0.849) |
TgAb | 0.029 (0.571) | 0.016 (0.826) | −0.008 (0.911) | 0.002 (0.975) | −0.194 (0.010) | 0.108 (0.120) |
TPOAb | 0.101 (0.045) | 0.092 (0.214) | 0.048 (0.487) | 0.057 (0.271) | −0.055 (0.465) | 0.077 (0.267) |
Thyroid volume | 0.078 (0.132) | 0.065 (0.396) | 0.074 (0.293) | 0.049 (0.359) | −0.047 (0.549) | 0.060 (0.398) |
Vitamin D | 0.089 (0.081) | 0.064 (0.395) | 0.099 (0.154) | 0.146 (0.005) | 0.173 (0.023) | 0.124 (0.081) |
OPA | RE | |||
---|---|---|---|---|
Phenotype | TSH > 10 (N = 46) NT | OT (N = 157) | TSH > 10 (N = 46) NT | OT (N = 157) |
r (p) | r (p) | r (p) | r (p) | |
TSH | 0.387 (0.014) | −0.012 (0.887) | −0.153 (0.373) | −0.084 (0.297) |
T3 | −0.363 (0.021) | 0.026 (0.753) | −0.048 (0.780) | 0.084 (0.322) |
T4 | −0.377 (0.017) | 0.041 (0.622) | −0.035 (0.837) | 0.050 (0.559) |
fT4 | −0.274 (0.091) | −0.215 (0.010) | 0.108 (0.537) | 0.041 (0.632) |
TgAb | 0.020 (0.901) | −0.126 (0.133) | −0.227 (0.183) | 0.035 (0.679) |
TPOAb | −0.104 (0.523) | 0.106 (0.207) | −0.221 (0.196) | 0.005 (0.954) |
Thyroid volume | 0.152 (0.364) | 0.027 (0.759) | −0.011 (0.950) | −0.063 (0.476) |
Vitamin D | −0.030 (0.856) | 0.090 (0.291) | 0.467 (0.004) | 0.071 (0.409) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vuletić, M.; Kaličanin, D.; Barić Žižić, A.; Cvek, M.; Sladić, S.; Škrabić, V.; Punda, A.; Boraska Perica, V. Occupational Physical Activity and Regular Exercise Are Inversely Correlated with Thyroid Function in Patients with Hashimoto’s Thyroiditis. Diseases 2024, 12, 281. https://doi.org/10.3390/diseases12110281
Vuletić M, Kaličanin D, Barić Žižić A, Cvek M, Sladić S, Škrabić V, Punda A, Boraska Perica V. Occupational Physical Activity and Regular Exercise Are Inversely Correlated with Thyroid Function in Patients with Hashimoto’s Thyroiditis. Diseases. 2024; 12(11):281. https://doi.org/10.3390/diseases12110281
Chicago/Turabian StyleVuletić, Marko, Dean Kaličanin, Ana Barić Žižić, Maja Cvek, Sanda Sladić, Veselin Škrabić, Ante Punda, and Vesna Boraska Perica. 2024. "Occupational Physical Activity and Regular Exercise Are Inversely Correlated with Thyroid Function in Patients with Hashimoto’s Thyroiditis" Diseases 12, no. 11: 281. https://doi.org/10.3390/diseases12110281
APA StyleVuletić, M., Kaličanin, D., Barić Žižić, A., Cvek, M., Sladić, S., Škrabić, V., Punda, A., & Boraska Perica, V. (2024). Occupational Physical Activity and Regular Exercise Are Inversely Correlated with Thyroid Function in Patients with Hashimoto’s Thyroiditis. Diseases, 12(11), 281. https://doi.org/10.3390/diseases12110281