Identifying Factors That Might Affect Outcomes of Exercise-Based Therapies in Long-COVID
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Participants
3.2. Start of Rehabilitation
3.3. Categories of Interventions
3.4. Duration, Frequency and Intensity of Training Sessions
3.5. Changes in Long-COVID Symptoms Related to the Training Program
3.6. Changes in Quality of Life Related to the Interventions
3.7. Changes in Physical Fitness Related to the Interventions
3.8. Changes in Pulmonary Parameters
3.9. Adverse Events in the Therapies
4. Discussion
4.1. General Observations in the Comparison of the Studies
4.2. Exercise-Based Therapy Improves Long-COVID Symptoms, Quality of Life, Pulmonary Parameters and Physical Fitness
4.2.1. Improvements in Long-COVID Symptoms
4.2.2. Improvements in Quality of Life
4.2.3. Improvements in Physical Fitness
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- WHO COVID-19 Dashboard. Available online: https://data.who.int/dashboards/covid19/cases (accessed on 23 October 2024).
- Post COVID-19 Condition (Long COVID). Available online: https://www.who.int/europe/news-room/fact-sheets/item/post-covid-19-condition (accessed on 23 October 2024).
- Health, N.I.f.; Excellence, C. COVID-19 Rapid Guideline: Managing the Long-Term Effects of COVID-19: NICE Guideline. 2020. Available online: https://www.nice.org.uk/guidance/ng188 (accessed on 13 November 2024).
- Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X.; et al. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet 2023, 401, e21–e33. [Google Scholar] [CrossRef]
- Cabrera Martimbianco, A.L.; Pacheco, R.L.; Bagattini, A.M.; Riera, R. Frequency, signs and symptoms, and criteria adopted for long COVID-19: A systematic review. Int. J. Clin. Pract. 2021, 75, e14357. [Google Scholar] [CrossRef] [PubMed]
- Bahmer, T.; Borzikowsky, C.; Lieb, W.; Horn, A.; Krist, L.; Fricke, J.; Scheibenbogen, C.; Rabe, K.F.; Maetzler, W.; Maetzler, C.; et al. Severity, predictors and clinical correlates of Post-COVID syndrome (PCS) in Germany: A prospective, multi-centre, population-based cohort study. EClinicalMedicine 2022, 51, 101549. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Leon, S.; Wegman-Ostrosky, T.; Perelman, C.; Sepulveda, R.; Rebolledo, P.A.; Cuapio, A.; Villapol, S. More than 50 long-term effects of COVID-19: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 16144. [Google Scholar] [CrossRef]
- Bellan, M.; Soddu, D.; Balbo, P.E.; Baricich, A.; Zeppegno, P.; Avanzi, G.C.; Baldon, G.; Bartolomei, G.; Battaglia, M.; Battistini, S.; et al. Respiratory and Psychophysical Sequelae Among Patients With COVID-19 Four Months After Hospital Discharge. JAMA Netw. Open 2021, 4, e2036142. [Google Scholar] [CrossRef]
- Global Burden of Disease Long, C.C.; Wulf Hanson, S.; Abbafati, C.; Aerts, J.G.; Al-Aly, Z.; Ashbaugh, C.; Ballouz, T.; Blyuss, O.; Bobkova, P.; Bonsel, G.; et al. Estimated Global Proportions of Individuals With Persistent Fatigue, Cognitive, and Respiratory Symptom Clusters Following Symptomatic COVID-19 in 2020 and 2021. JAMA 2022, 328, 1604–1615. [Google Scholar] [CrossRef] [PubMed]
- Peter, R.S.; Nieters, A.; Krausslich, H.G.; Brockmann, S.O.; Gopel, S.; Kindle, G.; Merle, U.; Steinacker, J.M.; Rothenbacher, D.; Kern, W.V.; et al. Post-acute sequelae of covid-19 six to 12 months after infection: Population based study. BMJ 2022, 379, e071050. [Google Scholar] [CrossRef] [PubMed]
- Thompson, E.J.; Williams, D.M.; Walker, A.J.; Mitchell, R.E.; Niedzwiedz, C.L.; Yang, T.C.; Huggins, C.F.; Kwong, A.S.F.; Silverwood, R.J.; Di Gessa, G.; et al. Long COVID burden and risk factors in 10 UK longitudinal studies and electronic health records. Nat. Commun. 2022, 13, 3528. [Google Scholar] [CrossRef]
- Talla, A.; Vasaikar, S.V.; Szeto, G.L.; Lemos, M.P.; Czartoski, J.L.; MacMillan, H.; Moodie, Z.; Cohen, K.W.; Fleming, L.B.; Thomson, Z.; et al. Persistent serum protein signatures define an inflammatory subcategory of long COVID. Nat. Commun. 2023, 14, 3417. [Google Scholar] [CrossRef]
- Kruger, A.; Vlok, M.; Turner, S.; Venter, C.; Laubscher, G.J.; Kell, D.B.; Pretorius, E. Proteomics of fibrin amyloid microclots in long COVID/post-acute sequelae of COVID-19 (PASC) shows many entrapped pro-inflammatory molecules that may also contribute to a failed fibrinolytic system. Cardiovasc. Diabetol. 2022, 21, 190. [Google Scholar] [CrossRef]
- Wang, X.; Huang, K.; Jiang, H.; Hua, L.; Yu, W.; Ding, D.; Wang, K.; Li, X.; Zou, Z.; Jin, M.; et al. Long-Term Existence of SARS-CoV-2 in COVID-19 Patients: Host Immunity, Viral Virulence, and Transmissibility. Virol. Sin. 2020, 35, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Carmo, A.; Pereira-Vaz, J.; Mota, V.; Mendes, A.; Morais, C.; da Silva, A.C.; Camilo, E.; Pinto, C.S.; Cunha, E.; Pereira, J.; et al. Clearance and persistence of SARS-CoV-2 RNA in patients with COVID-19. J. Med. Virol. 2020, 92, 2227–2231. [Google Scholar] [CrossRef] [PubMed]
- Peluso, M.J.; Deveau, T.M.; Munter, S.E.; Ryder, D.; Buck, A.; Beck-Engeser, G.; Chan, F.; Lu, S.; Goldberg, S.A.; Hoh, R.; et al. Chronic viral coinfections differentially affect the likelihood of developing long COVID. J. Clin. Investig. 2023, 133, e163669. [Google Scholar] [CrossRef] [PubMed]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef]
- Leitlinie. „Post-COVID/Long-COVID”. Rehabilitation 2021, 60, 296. [Google Scholar] [CrossRef]
- Vonbank, K.; Zwick, R.H.; Strauss, M.; Lichtenschopf, A.; Puelacher, C.; Budnowski, A.; Possert, G.; Trinker, M. Guidelines for outpatient pulmonary rehabilitation in Austria. Wien. Klin. Wochenschr. 2015, 127, 503–513. [Google Scholar] [CrossRef]
- Wedzicha, J.A.E.C.-C.; Miravitlles, M.; Hurst, J.R.; Calverley, P.M.; Albert, R.K.; Anzueto, A.; Criner, G.J.; Papi, A.; Rabe, K.F.; Rigau, D.; et al. Management of COPD exacerbations: A European Respiratory Society/American Thoracic Society guideline. Eur. Respir. J. 2017, 49, 1600791. [Google Scholar] [CrossRef]
- Yelin, D.; Moschopoulos, C.D.; Margalit, I.; Gkrania-Klotsas, E.; Landi, F.; Stahl, J.P.; Yahav, D. ESCMID rapid guidelines for assessment and management of long COVID. Clin. Microbiol. Infect. 2022, 28, 955–972. [Google Scholar] [CrossRef]
- Spruit, M.A.; Holland, A.E.; Singh, S.J.; Tonia, T.; Wilson, K.C.; Troosters, T. COVID-19: Interim Guidance on Rehabilitation in the Hospital and Post-Hospital Phase from a European Respiratory Society and American Thoracic Society-coordinated International Task Force. Eur. Respir. J. 2020, 56, 2002197. [Google Scholar] [CrossRef]
- Caring for Patients with Post-COVID-19 Conditions. Available online: https://www.racgp.org.au/clinical-resources/covid-19-resources/clinical-care/caring-for-patients-with-post-covid-19-conditions/introduction (accessed on 21 October 2024).
- World Health Organization. Guideline Clinical Management of COVID-19: Living Guideline; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Royal Australian College of General Practitioners. Patient Resource: Managing-Post-COVID-19 Symptoms. 2020. Available online: https://www.racgp.org.au/FSDEDEV/media/documents/Clinical%20Resources/Guidelines/Managing-post-COVID-19.pdf (accessed on 13 November 2024).
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef]
- World Health Organization. Support for Rehabilitation Self-Management After COVID-19-Related Illness; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Pedersen, B.K.; Saltin, B. Exercise as medicine—Evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand. J. Med. Sci. Sports 2015, 25 (Suppl. S3), 1–72. [Google Scholar] [CrossRef] [PubMed]
- Luan, X.; Tian, X.; Zhang, H.; Huang, R.; Li, N.; Chen, P.; Wang, R. Exercise as a prescription for patients with various diseases. J. Sport. Health Sci. 2019, 8, 422–441. [Google Scholar] [CrossRef] [PubMed]
- Kujala, U.M. Summary of the Effects of Exercise Therapy in Non-Communicable Diseases: Clinically Relevant Evidence from Meta-Analyses of Randomized Controlled Trials. medRxiv 2021, 2021-02. [Google Scholar] [CrossRef]
- Jacobsen, P.B. Assessment of Fatigue in Cancer Patients. JNCI Monogr. 2004, 2004, 93–97. [Google Scholar] [CrossRef]
- Hussey, C.; Gupta, A. Exercise interventions to combat cancer-related fatigue in cancer patients undergoing treatment: A review. Cancer Investig. 2022, 40, 822–838. [Google Scholar] [CrossRef]
- Mandolesi, L.; Polverino, A.; Montuori, S.; Foti, F.; Ferraioli, G.; Sorrentino, P.; Sorrentino, G. Effects of Physical Exercise on Cognitive Functioning and Wellbeing: Biological and Psychological Benefits. Front. Psychol. 2018, 9, 509. [Google Scholar] [CrossRef]
- Kashihara, K.; Maruyama, T.; Murota, M.; Nakahara, Y. Positive effects of acute and moderate physical exercise on cognitive function. J. Physiol. Anthr. 2009, 28, 155–164. [Google Scholar] [CrossRef]
- Sanchez-Garcia, J.C.; Rentero Moreno, M.; Piqueras-Sola, B.; Cortes-Martin, J.; Linan-Gonzalez, A.; Mellado-Garcia, E.; Rodriguez-Blanque, R. Physical Therapies in the Treatment of Post-COVID Syndrome: A Systematic Review. Biomedicines 2023, 11, 2253. [Google Scholar] [CrossRef]
- Pouliopoulou, D.V.; Macdermid, J.C.; Saunders, E.; Peters, S.; Brunton, L.; Miller, E.; Quinn, K.L.; Pereira, T.V.; Bobos, P. Rehabilitation Interventions for Physical Capacity and Quality of Life in Adults with Post-COVID-19 Condition: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2023, 6, e2333838. [Google Scholar] [CrossRef]
- Calvache-Mateo, A.; Heredia-Ciuro, A.; Martin-Nunez, J.; Hernandez-Hernandez, S.; Reychler, G.; Lopez-Lopez, L.; Valenza, M.C. Efficacy and Safety of Respiratory Telerehabilitation in Patients with Long COVID-19: A Systematic Review and Meta-Analysis. Healthcare 2023, 11, 2519. [Google Scholar] [CrossRef]
- Melendez-Oliva, E.; Martinez-Pozas, O.; Cuenca-Zaldivar, J.N.; Villafane, J.H.; Jimenez-Ortega, L.; Sanchez-Romero, E.A. Efficacy of Pulmonary Rehabilitation in Post-COVID-19: A Systematic Review and Meta-Analysis. Biomedicines 2023, 11, 2213. [Google Scholar] [CrossRef] [PubMed]
- Dillen, H.; Bekkering, G.; Gijsbers, S.; Vande Weygaerde, Y.; Van Herck, M.; Haesevoets, S.; Bos, D.A.G.; Li, A.; Janssens, W.; Gosselink, R.; et al. Clinical effectiveness of rehabilitation in ambulatory care for patients with persisting symptoms after COVID-19: A systematic review. BMC Infect. Dis. 2023, 23, 419. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Cao, M.; Yeung, W.F.; Cheung, D.S.T. The effectiveness of exercise in alleviating long COVID symptoms: A systematic review and meta-analysis. Worldviews Evid. Based Nurs. 2024, 21, 561–574. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Briggs, J. Institute JBI Critical Appraisal Tools. Available online: https://jbi.global/critical-appraisal-tools (accessed on 9 November 2024).
- Mitra, A.K.; Asala, A.F.; Malone, S.; Mridha, M.K. Effects of Probiotics in Adults with Gastroenteritis: A Systematic Review and Meta-Analysis of Clinical Trials. Diseases 2023, 11, 138. [Google Scholar] [CrossRef]
- Jimeno-Almazán, A.; Franco-López, F.; Buendía-Romero, Á.; Martínez-Cava, A.; Sánchez-Agar, J.A.; Sánchez-Alcaraz Martínez, B.J.; Courel-Ibáñez, J.; Pallarés, J.G. Rehabilitation for post-COVID-19 condition through a supervised exercise intervention: A randomized controlled trial: A randomized controlled trial. Scand. J. Med. Sci. Sports 2022, 32, 1791–1801. [Google Scholar] [CrossRef]
- Elhamrawy, M.Y.; Sherbini AehIes, M.E.; Mokhtar, M.M.; Mashaal, A.; Elkady, S.M.; Elsadany, S.M.; Said, M.T. Effect of Tai Chi versus Aerobic Training on Improving Hand Grip Strength, Fatigue, and Functional Performance in Older Adults Post-COVID-19: A randomized controlled trial. J. Popul. Ther. Clin. Pharmacol. 2023, 30, e190–e198. [Google Scholar] [CrossRef]
- Binetti, J.; Real, M.; Renzulli, M.; Bertran, L.; Riesco, D.; Perpinan, C.; Mohedano, A.; Segundo, R.S.; Ortiz, M.; Porras, J.A.; et al. Clinical and Biomarker Profile Responses to Rehabilitation Treatment in Patients with Long COVID Characterized by Chronic Fatigue. Viruses 2023, 15, 1452. [Google Scholar] [CrossRef]
- Azizbhai Bhurka, A.; Unmesh Shukla, Y. Effect of Aerobic Exercise Versus Resistance Training on Anxiety and Physical Fitness Among the Post Covid Young Adults—A Comparative Interventional Study. Int. J. Health Sci. Res. 2023, 13, 59–75. [Google Scholar] [CrossRef]
- Dierckx, W.; De Backer, W.; De Meyer, Y.; Lauwers, E.; Franck, E.; De Backer, J.; Ides, K. Personalized pulmonary rehabilitation program for patients with post-acute sequelae of COVID-19: A proof-of-concept retrospective study. Physiol. Rep. 2024, 12, e15931. [Google Scholar] [CrossRef]
- Romanet, C.; Wormser, J.; Fels, A.; Lucas, P.; Prudat, C.; Sacco, E.; Bruel, C.; Plantefeve, G.; Pene, F.; Chatellier, G.; et al. Effectiveness of exercise training on the dyspnoea of individuals with long COVID: A randomised controlled multicentre trial. Ann. Phys. Rehabil. Med. 2023, 66, 101765. [Google Scholar] [CrossRef] [PubMed]
- Mińko, A.; Turoń-Skrzypińska, A.; Rył, A.; Szylińska, A.; Denisewicz, I.; Rotter, I. Effects of Comprehensive Rehabilitation on Pulmonary Function in Patients Recovering from COVID-19. Int. J. Environ. Res. Public. Health 2023, 20, 3985. [Google Scholar] [CrossRef]
- Oliveira, K.C.V.D.; Ferreira, A.P.D.L.; Silva, D.D.A.; Monteiro, J.D.S.; Silva, K.V.; Lucena, L.C.D.; Araújo, M.D.G.R.D. The impact of post-COVID multicomponent rehabilitation. Fisioter. Mov. 2023, 36, e36112. [Google Scholar] [CrossRef]
- Ali, A.A.; Elnahas, N.G.; Algazzar, S.A.; Lotfy, A.W.M.; Taha, E.M. Impact of active cycle of breathing technique on selected pulmonary outcomes in post-COVID syndrome patients. J. Pharm. Negat. Results 2023, 14, 710–717. [Google Scholar]
- Sanchez-Mila, Z.; Abuin-Porras, V.; Romero-Morales, C.; Almazan-Polo, J.; Velazquez Saornil, J. Effectiveness of a respiratory rehabilitation program including an inspiration training device versus traditional respiratory rehabilitation: A randomized controlled trial. PeerJ 2023, 11, e16360. [Google Scholar] [CrossRef]
- Szarvas, Z.; Fekete, M.; Horvath, R.; Shimizu, M.; Tsuhiya, F.; Choi, H.E.; Kup, K.; Fazekas-Pongor, V.; Pete, K.N.; Cserjesi, R.; et al. Cardiopulmonary rehabilitation programme improves physical health and quality of life in post-COVID syndrome. Ann. Palliat. Med. 2023, 12, 548–560. [Google Scholar] [CrossRef]
- Jimeno-Almazan, A.; Buendia-Romero, A.; Martinez-Cava, A.; Franco-Lopez, F.; Sanchez-Alcaraz, B.J.; Courel-Ibanez, J.; Pallares, J.G. Effects of a concurrent training, respiratory muscle exercise, and self-management recommendations on recovery from post-COVID-19 conditions: The RECOVE trial. J. Appl. Physiol. 2023, 134, 95–104. [Google Scholar] [CrossRef]
- Vallier, J.M.; Simon, C.; Bronstein, A.; Dumont, M.; Jobic, A.; Paleiron, N.; Mely, L. Randomized controlled trial of home-based vs. hospital-based pulmonary rehabilitation in post COVID-19 patients. Eur. J. Phys. Rehabil. Med. 2023, 59, 103–110. [Google Scholar] [CrossRef]
- Ponce-Campos, S.D.; Díaz, J.M.; Moreno-Agundis, D.; González-Delgado, A.L.; Andrade-Lozano, P.; Avelar-González, F.J.; Hernández-Cuellar, E.; Torres-Flores, F. A Physiotherapy Treatment Plan for Post-COVID-19 Patients That Improves the FEV1, FVC, and 6-Min Walk Values, and Reduces the Sequelae in 12 Sessions. Front. Rehabil. Sci. 2022, 3, 907603. [Google Scholar] [CrossRef]
- Rzepka-Cholasinska, A.; Ratajczak, J.; Michalski, P.; Kasprzak, M.; Kosobucka-Ozdoba, A.; Pietrzykowski, L.; Grzelakowska, K.; Kubica, J.; Krys, J.; Kubica, A. Gender-Related Effectiveness of Personalized Post-COVID-19 Rehabilitation. J. Clin. Med. 2024, 13, 938. [Google Scholar] [CrossRef]
- Mammi, P.; Ranza, E.; Rampello, A.; Ravanetti, D.; Cavaldonati, A.; Moretti, S.; Gobbi, E.; Rodà, F.; Brianti, R. Post-COVID-19 Ongoing Symptoms and Health-Related Quality of Life: Does Rehabilitation Matter?: Preliminary Evidence. Am. J. Phys. Med. Rehabil. 2023, 102, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Pietranis, K.A.; Izdebska, W.M.; Kuryliszyn-Moskal, A.; Dakowicz, A.; Ciolkiewicz, M.; Kaniewska, K.; Dzieciol-Anikiej, Z.; Wojciuk, M. Effects of Pulmonary Rehabilitation on Respiratory Function and Thickness of the Diaphragm in Patients with Post-COVID-19 Syndrome: A Randomized Clinical Trial. J. Clin. Med. 2024, 13, 425. [Google Scholar] [CrossRef]
- Benzarti, W.; Toulgui, E.; Ghram, A.; Rahmani, C.; Aissa, S.; Ghannouchi, I.; Gargouri, I.; Sayhi, A.; Knaz, A.; Ouanes, W.; et al. Impact of a pulmonary rehabilitation program on social disadvantage and physical activity data of postCOVID19 patients: A North-African pilot study. F1000Res 2022, 11, 1226. [Google Scholar] [CrossRef] [PubMed]
- Daynes, E.; Gerlis, C.; Chaplin, E.; Gardiner, N.; Singh, S.J. Early experiences of rehabilitation for individuals post-COVID to improve fatigue, breathlessness exercise capacity and cognition—A cohort study. Chronic Respir. Dis. 2021, 18, 14799731211015691. [Google Scholar] [CrossRef] [PubMed]
- Colas, C.; Le Berre, Y.; Fanget, M.; Savall, A.; Killian, M.; Goujon, I.; Labeix, P.; Bayle, M.; Feasson, L.; Roche, F.; et al. Physical Activity in Long COVID: A Comparative Study of Exercise Rehabilitation Benefits in Patients with Long COVID, Coronary Artery Disease and Fibromyalgia. Int. J. Env. Res. Public Health 2023, 20, 6513. [Google Scholar] [CrossRef]
- Halvorsen, J.; Henderson, C.; Romney, W.; Haga, M.; Barkenaes Eggen, T.; Nordvik, J.E.; Rosseland, I.; Moore, J. Feasibility and Safety of Early Post-COVID-19 High-Intensity Gait Training: A Pilot Study. J. Clin. Med. 2023, 13, 237. [Google Scholar] [CrossRef]
- Gloeckl, R.; Leitl, D.; Jarosch, I.; Schneeberger, T.; Nell, C.; Stenzel, N.; Vogelmeier, C.F.; Kenn, K.; Koczulla, A.R. Benefits of pulmonary rehabilitation in COVID-19: A prospective observational cohort study. ERJ Open Res. 2021, 7, 00108-2021. [Google Scholar] [CrossRef]
- Hasting, A.S.; Herzig, S.; Obrig, H.; Schroeter, M.L.; Villringer, A.; Thöne-Otto, A.I.T. The Leipzig Treatment Program for Interdisciplinary Diagnosis and Therapy of Neurocognitive Post-COVID Symptoms. Z. Neuropsychol. 2023, 34, 71–83. [Google Scholar] [CrossRef]
- Hayden, M.C.; Limbach, M.; Schuler, M.; Merkl, S.; Schwarzl, G.; Jakab, K.; Nowak, D.; Schultz, K. Effectiveness of a Three-Week Inpatient Pulmonary Rehabilitation Program for Patients after COVID-19: A Prospective Observational Study. Int. J. Envrion. Res. Public Health 2021, 18, 9001. [Google Scholar] [CrossRef]
- Kesikburun, B.; Ata, A.M.; Borman, P.; Özdemir, E.E.; Becenen, E.; Metin, N.; Alemdaroğlu, E. The effect of comprehensive rehabilitation on post-COVID-19 syndrome. Egypt. Rheumatol. Rehabil. 2023, 50, 60. [Google Scholar] [CrossRef]
- Nopp, S.; Moik, F.; Klok, F.A.; Gattinger, D.; Petrovic, M.; Vonbank, K.; Koczulla, A.R.; Ay, C.; Zwick, R.H. Outpatient Pulmonary Rehabilitation in Patients with Long COVID Improves Exercise Capacity, Functional Status, Dyspnea, Fatigue, and Quality of Life. Respiration 2022, 101, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Grishechkina, I.A.; Lobanov, A.A.; Andronov, S.V.; Rachin, A.P.; Fesyun, A.D.; Ivanova, E.P.; Masiero, S.; Maccarone, M.C. Long-term outcomes of different rehabilitation programs in patients with long COVID syndrome: A cohort prospective study. Eur. J. Transl. Myol. 2023, 33, 11063. [Google Scholar] [CrossRef] [PubMed]
- Zasadzka, E.; Tobis, S.; Trzmiel, T.; Marchewka, R.; Kozak, D.; Roksela, A.; Pieczyńska, A.; Hojan, K. Application of an EMG-Rehabilitation Robot in Patients with Post-Coronavirus Fatigue Syndrome (COVID-19)—A Feasibility Study. Int. J. Environ. Res. Public Health 2022, 19, 10398. [Google Scholar] [CrossRef] [PubMed]
- Trzmiel, T.; Marchewka, R.; Pieczynska, A.; Zasadzka, E.; Zubrycki, I.; Kozak, D.; Mikulski, M.; Poswiata, A.; Tobis, S.; Hojan, K. The Effect of Using a Rehabilitation Robot for Patients with Post-Coronavirus Disease (COVID-19) Fatigue Syndrome. Sensors 2023, 23, 8120. [Google Scholar] [CrossRef]
- Calvo-Paniagua, J.; Diaz-Arribas, M.J.; Valera-Calero, J.A.; Gallardo-Vidal, M.I.; Fernandez-de-Las-Penas, C.; Lopez-de-Uralde-Villanueva, I.; Del Corral, T.; Plaza-Manzano, G. A tele-health primary care rehabilitation program improves self-perceived exertion in COVID-19 survivors experiencing Post-COVID fatigue and dyspnea: A quasi-experimental study. PLoS ONE 2022, 17, e0271802. [Google Scholar] [CrossRef]
- Bileviciute-Ljungar, I.; Norrefalk, J.R.; Borg, K. Improved Functioning and Activity According to the International Classification of Functioning and Disability after Multidisciplinary Telerehabilitation for Post-COVID-19 Condition—A Randomized Control Study. J. Clin. Med. 2024, 13, 970. [Google Scholar] [CrossRef]
- Estebanez-Perez, M.J.; Pastora-Bernal, J.M.; Martin-Valero, R. The Effectiveness of a Four-Week Digital Physiotherapy Intervention to Improve Functional Capacity and Adherence to Intervention in Patients with Long COVID-19. Int. J. Environ. Res. Public Health 2022, 19, 9566. [Google Scholar] [CrossRef]
- Colas, C.; Bayle, M.; Labeix, P.; Botelho-Nevers, E.; Gagneux-Brunon, A.; Cazorla, C.; Schein, F.; Breugnon, E.; Garcin, A.; Feasson, L.; et al. Management of Long COVID-The CoviMouv’ Pilot Study: Importance of Adapted Physical Activity for Prolonged Symptoms Following SARS-CoV2 Infection. Front. Sports Act. Living 2022, 4, 877188. [Google Scholar] [CrossRef]
- Reis, N.; Costa Dias, M.J.; Sousa, L.; Canedo, F.; Rico, M.T.; Henriques, M.A.; Baixinho, C.L. Telerehabilitation Intervention in Transitional Care for People with COVID-19: Pre-Post Study with a Non-Equivalent Control Group. Healthcare 2023, 11, 2561. [Google Scholar] [CrossRef]
- Rodriguez-Blanco, C.; Bernal-Utrera, C.; Anarte-Lazo, E.; Gonzalez-Gerez, J.J.; Saavedra-Hernandez, M. A 14-Day Therapeutic Exercise Telerehabilitation Protocol of Physiotherapy Is Effective in Non-Hospitalized Post-COVID-19 Conditions: A Randomized Controlled Trial. J. Clin. Med. 2023, 12, 776. [Google Scholar] [CrossRef]
- McGregor, G.; Sandhu, H.; Bruce, J.; Sheehan, B.; McWilliams, D.; Yeung, J.; Jones, C.; Lara, B.; Alleyne, S.; Smith, J.; et al. Clinical effectiveness of an online supervised group physical and mental health rehabilitation programme for adults with post-covid-19 condition (REGAIN study): Multicentre randomised controlled trial. BMJ 2024, 384, e076506. [Google Scholar] [CrossRef] [PubMed]
- Rutkowski, S.; Bogacz, K.; Czech, O.; Rutkowska, A.; Szczegielniak, J. Effectiveness of an Inpatient Virtual Reality-Based Pulmonary Rehabilitation Program among COVID-19 Patients on Symptoms of Anxiety, Depression and Quality of Life: Preliminary Results from a Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2022, 19, 16980. [Google Scholar] [CrossRef] [PubMed]
- Rutkowski, S.; Bogacz, K.; Rutkowska, A.; Szczegielniak, J.; Casaburi, R. Inpatient post-COVID-19 rehabilitation program featuring virtual reality-Preliminary results of randomized controlled trial. Front. Public Health 2023, 11, 1121554. [Google Scholar] [CrossRef] [PubMed]
- Parker, M.; Sawant, H.B.; Flannery, T.; Tarrant, R.; Shardha, J.; Bannister, R.; Ross, D.; Halpin, S.; Greenwood, D.C.; Sivan, M. Effect of using a structured pacing protocol on post-exertional symptom exacerbation and health status in a longitudinal cohort with the post-COVID-19 syndrome. J. Med. Virol. 2023, 95, e28373. [Google Scholar] [CrossRef]
- Marten, O.; Greiner, W. EQ-5D-5L reference values for the German general elderly population. Health Qual. Life Outcomes 2021, 19, 76. [Google Scholar] [CrossRef]
- Van Wilder, L.; Charafeddine, R.; Beutels, P.; Bruyndonckx, R.; Cleemput, I.; Demarest, S.; De Smedt, D.; Hens, N.; Scohy, A.; Speybroeck, N.; et al. Belgian population norms for the EQ-5D-5L, 2018. Qual. Life Res 2022, 31, 527–537. [Google Scholar] [CrossRef]
- Barreiro, T.J.; Perillo, I. An approach to interpreting spirometry. Am. Fam. Physician 2004, 69, 1107–1114. [Google Scholar]
- Stanojevic, S.; Wade, A.; Stocks, J. Reference values for lung function: Past, present and future. Eur. Respir. J. 2010, 36, 12–19. [Google Scholar] [CrossRef]
- Castro, D.; Patil, S.M.; Zubair, M.; Keenaghan, M. Arterial Blood Gas. In StatPearls; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Robertson, M.M.; Qasmieh, S.A.; Kulkarni, S.G.; Teasdale, C.A.; Jones, H.E.; McNairy, M.; Borrell, L.N.; Nash, D. The emidemiology of long coronavirus disease in US adults. Clin. Infect. Dis. 2023, 76, 1636–1645. [Google Scholar] [CrossRef]
- Chen, C.; Haupert, S.R.; Zimmermann, L.; Shi, X.; Fritsche, L.G.; Mukherjee, B. Global Prevalence of Post-Coronavirus Disease 2019 (COVID-19) Condition or Long COVID: A Meta-Analysis and Systematic Review. J. Infect. Dis. 2022, 226, 1593–1607. [Google Scholar] [CrossRef]
- Barker, K.; Eickmeyer, S. Therapeutic Exercise. Med. Clin. N. Am. 2020, 104, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Vernon, S.D.; Hartle, M.; Sullivan, K.; Bell, J.; Abbaszadeh, S.; Unutmaz, D.; Bateman, L. Post-exertional malaise among people with long COVID compared to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Work 2023, 74, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Gloeckl, R.; Zwick, R.H.; Fürlinger, U.; Schneeberger, T.; Leitl, D.; Jarosch, I.; Behrends, U.; Scheibenbogen, C.; Koczulla, A.R. Practical Recommendations for Exercise Training in Patients with Long COVID with or without Post-exertional Malaise: A Best Practice Proposal. Sports Med. Open 2024, 10, 47. [Google Scholar] [CrossRef] [PubMed]
- Marciniak, E.; Gorniak, A.; Hanke, W. Long lasting symptoms of dyspnea, cough and fatigue after COVID-19—Narrative review of epidemiological studies. Med. Pr. 2021, 72, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Al-Hakeim, H.K.; Al-Rubaye, H.T.; Almulla, A.F.; Al-Hadrawi, D.S.; Maes, M. Chronic Fatigue, Depression and Anxiety Symptoms in Long COVID Are Strongly Predicted by Neuroimmune and Neuro-Oxidative Pathways Which Are Caused by the Inflammation during Acute Infection. J. Clin. Med. 2023, 12, 511. [Google Scholar] [CrossRef] [PubMed]
- Carlile, O.; Briggs, A.; Henderson, A.D.; Butler-Cole, B.F.C.; Tazare, J.; Tomlinson, L.A.; Marks, M.; Jit, M.; Lin, L.Y.; Bates, C.; et al. Impact of long COVID on health-related quality-of-life: An OpenSAFELY population cohort study using patient-reported outcome measures (OpenPROMPT). Lancet Reg. Health Eur. 2024, 40, 100908. [Google Scholar] [CrossRef]
- Prasannan, N.; Heightman, M.; Hillman, T.; Wall, E.; Bell, R.; Kessler, A.; Neave, L.; Doyle, A.; Devaraj, A.; Singh, D.; et al. Impaired exercise capacity in post-COVID-19 syndrome: The role of VWF-ADAMTS13 axis. Blood Adv. 2022, 6, 4041–4048. [Google Scholar] [CrossRef]
- Velez-Santamaria, R.; Fernandez-Solana, J.; Mendez-Lopez, F.; Dominguez-Garcia, M.; Gonzalez-Bernal, J.J.; Magallon-Botaya, R.; Olivan-Blazquez, B.; Gonzalez-Santos, J.; Santamaria-Pelaez, M. Functionality, physical activity, fatigue and quality of life in patients with acute COVID-19 and Long COVID infection. Sci. Rep. 2023, 13, 19907. [Google Scholar] [CrossRef]
- Enright, P.L.; Sherrill, D.L. Reference equations for the six-minute walk in healthy adults. Am. J. Respir. Crit. Care Med. 1998, 158, 1384–1387. [Google Scholar] [CrossRef]
- Troosters, T.; Gosselink, R.; Decramer, M. Six minute walking distance in healthy elderly subjects. Eur. Respir. J. 1999, 14, 270–274. [Google Scholar] [CrossRef]
- Strassmann, A.; Steurer-Stey, C.; Lana, K.D.; Zoller, M.; Turk, A.J.; Suter, P.; Puhan, M.A. Population-based reference values for the 1-min sit-to-stand test. Int. J. Public Health 2013, 58, 949–953. [Google Scholar] [CrossRef]
- Vilarinho, R.; Montes, A.M.; Noites, A.; Silva, F.; Melo, C. Reference values for the 1-minute sit-to-stand and 5 times sit-to-stand tests to assess functional capacity: A cross-sectional study. Physiotherapy 2024, 124, 85–92. [Google Scholar] [CrossRef]
Author, Year | Participants: Number, Age, Sex (f/m) | Intervention | Duration, Frequency, Dose | Effect (Improvements: yes/no/n. m.) | Quality Appraisal and Scoring 1 |
---|---|---|---|---|---|
PHYSICAL EXERCISE | |||||
Jimeno-Almaz et al., 2022, [44] | 39 45.2 ± 9.5 (29/10) | IG: Concurrent training (resistance training combined with aerobic training) CG: followed WHO guidelines for rehabilitation after COVID-19 (aerobic and strength exercises) | 8 weeks 2 sessions/week 50% 1 RM 55–65% HRR, 65–70% HRR and 70–80% HRR Used RPE and individual progression | Symptoms: yes Quality of life: yes Physical fitness: yes Pulmonary parameters: yes No adverse events | Score 4 out of 4 (high) |
Mohammed et al., 2023, [45] | 54 (19/35) | Thai Chi group Aerobic training group ADL group | 12 weeks 4 sessions/week 50–70% HRmax and 40–60% HR max Borg scale (4–6/10) | Symptoms: yes Quality of life: n. m. Physical fitness: yes Pulmonary parameters: n. m. | Score 4 out of 4 (high) |
Binetti et al., 2023, [46] | 9 44.21 Only female | Physiotherapy: stretching, aerobic exercise, strengthening exercise | 3 months 12–20 sessions Progression in duration and intensity HR monitoring | Symptoms: no Quality of life: n. m. Physical fitness: yes Pulmonary parameters: n. m. | Score 2 out of 4 (poor) |
PHYSICAL EXERCISE AND BREATHING EXERCISE | |||||
Azizbhai et al., 2023, [47] | 34 18–45 years (23/11) | Resistance group Aerobic group | 4 weeks Aerobic: 5 days/week and resistance: 2 days/week 50–60% HRR and used RPE (4–6/10) 60–80% of 1 RM | Symptoms: yes Quality of life: n. m. Physical fitness: yes Pulmonary parameters: n. m. | Score 3 out of 4 (moderate) |
Dierckx et al., 2024, [48] | 17 42 ± 13 (12/5) | Endurance, resistance and strength training, inspiratory muscle training | 3 months 3 sessions/week Cycling: 50% of the load reached at anaerobic threshold Treadmill: 60% walking speed, 60% of 1 RM, 60% of MIP | Symptoms: yes Quality of life: yes Physical fitness: yes Pulmonary parameters: no | Score 2 out of 4 (poor) |
Romanet et al., 2023, [49] | 60 (23/37) | IG: endurance and strength training CG: physiotherapy: aerobic and strength training, stretching, balance, electrostimulation, respiratory therapy | 90 days/10 weeks 2 sessions/week IG: 60 min and CG: 30 min Endurance: 60–70% of maximal peak power Used Borg scale for dyspnea (4–6/10) and muscle fatigue | Symptoms: yes Quality of life: no Physical fitness: n. m. Pulmonary parameters: n. m. | Score 3 out of 4 (moderate) |
Mińko et al., 2023, [50] | 150 64.66 ± 11.93 | Aerobic training, strength training, march training, endurance exercises | 2–6 weeks 6 days/week all types of training 30 min 60–85% of 1 RM with progression Used Borg Scale (2–3/10) and in exercise tolerance | Symptoms: n. m. Quality of life: n. m. Physical fitness: n. m. Pulmonary parameters: yes | Score 3 out of 4 (moderate) |
Oliveira et al., 2023, [51] | 59 52.32 + 11.87 (34/25) | IG: mobility, stretching, breathing techniques, resistance, strength, balance and relaxation CG: no training but received educational orientation and performed ADLs | 12 weeks 24 sessions 2 sessions/week 60 min | Symptoms: n. m. Quality of life: no Physical fitness: no Pulmonary parameters: n. m. | Score 4 out of 4 (high) |
Ali et al., 2023, [52] | 60 45.7 ± 2.40 (31/29) | Group A: physiotherapy: aerobic exercise, muscle strengthening and respiratory exercise Group B: active cycle of breathing technique and physiotherapy (see Group A) | 12 weeks 3 sessions/week 30–65 min 30–40% 1 RM to 80% 1 RM HR, oxygen serration and Borg Sale | Symptoms: yes Quality of life: n. m. Physical fitness: yes Pulmonary parameters: n. m. | Score 4 out of 4 (high) |
Sanchez-Mila et al., 2023, [53] | 200 (100/100) | IG: inspiratory muscle training with device and aerobic exercise CG: respiratory/diaphragmatic exercises and aerobic exercise | 31 days 6 sessions/week 60–75% HRmax and 50–60% VO2max | Symptoms: yes Quality of life: n. m. Physical fitness: yes Pulmonary parameters: yes | Score 4 out of 4 (high) |
Szarvas et al., 2023, [54] | 68 53.5 (29/39) | Breathing techniques, chest mobility, muscle strengthening Aerobic respiratory muscle strengthening, stretching, active cycle breathing | 2 weeks 2–3 sessions/week 30 min Monitoring of HR and oxygen saturation 40% MIP | Symptoms: yes Quality of life: yes Physical fitness: yes Pulmonary parameters: yes No adverse events | Score 3 out of 4 (moderate) |
PHYSICAL EXERCISE, BREATHING EXERCISE AND PACING | |||||
Jimeno-Almaz et al., 2023, [55] | 80 45.3 ± 8.0 (55/25) | Concurrent training group: resistance and endurance Inspiratory muscle training group: combination group: CG: self-management WHO | 8 weeks 3 sessions/week 50% 1 RM, 55–65% HRR and 70–80 HRR, ~60% MIP Used RPE: resistance, aerobic and inspiratory muscle training | Symptoms: yes Quality of life: yes Physical fitness: yes Pulmonary parameters: n.m. No adverse events | Score 4 out of 4 (high) |
PHYSICAL EXERCISE AND SOPHROLOGY | |||||
Vallier et al., 2023, [56] | 17 54.8 ± 16.0 (5/12) | Endurance sessions, gymnastics/muscular strength, sonography, medical consultation (dietician, psychologist, physician before and after rehabilitation) | 4 weeks 7 sessions/week (4 times walks and 3 times gymnastics) At 90–100% HR achieved at the end of 6 MWT | Symptoms: yes Quality of life: yes Physical fitness: yes Pulmonary parameters: yes | Score 3 out of 4 (moderate) |
PHYSICAL EXERCISE, BREATHING EXERCISE AND EDUCATIONAL SESSIONS | |||||
Ponce-Campos, et al., 2022, [57] | 42 53.35 (17/25) | Physiotherapy: breathing exercises, mobilization, relaxation, progressive strengthening exercise, teaching energy saving techniques, aerobic exercises, balance and coordination | 4 weeks 3 sessions/week Individualized according to the need of each patient 55–60%, 60–65% and 70–75% of HRmax | Symptoms: yes Quality of life: n. m. Physical fitness: yes Pulmonary parameters: yes | Score 3 out of 4 (moderate) |
Rzepka-Cholasińska et al., 2024, [58] | 90 61.65 ± 5.39 (49/41) | Aerobic exercises, strength and resistance training, balance, breathing, respiratory exercises, stretching, education | 6 weeks 3 sessions/week 30 min/session Progression 30–60% HRR | Symptoms: yes Quality of life: yes Physical fitness: yes Pulmonary parameters: n. m. | Score 3 out of 4 (moderate) |
Mammi et al. 2023, [59] | 50 53 ± 11.4 (29/21) | Manual physical therapy, soft tissue, kinesiotaping, stretching, flexibility and mobility, core stability, balance, endurance, educational session | 2 sessions/week 10 individual sessions for 45 min Used Borg Scale (for progression) | Symptoms: yes Quality of life: yes Physical fitness: n. m. Pulmonary parameters: n. m. | Score 2 out of 4 (poor) |
Pietranis et al., 2024, [60] | 59 63.1±13.41 (37/22) | Both groups: physiotherapeutic interventions: aerobic, respiratory and resistance training, overall fitness exercises, stretching, educational sessions IG: resistance training with respiratory muscle trainer CG: placebo respiratory muscle trainer | 6 weeks 45–55% to 70–80% HRmax | Symptoms: n. m. Quality of life: n. m. Physical fitness: n. m. Pulmonary parameters: yes No serious adverse events | Score 4 out of 4 (high) |
Benzarti et al., 2022, [61] | 14 61 ± 4 Only male | Aerobic cycle endurance, strength training, balance, stretching, relaxation, breathing techniques and education | 4 weeks 3 sessions/week, 70 min HR monitoring, target HR is HR in the end of 6 MWT | Symptoms: yes Quality of life: yes Physical fitness: yes Pulmonary parameters: n. m. | Score 1 out of 4 (very poor) |
PHYSICAL EXERCISE AND EDUCATIONAL SESSIONS | |||||
Daynes et al., 2021, [62] | 30 58 (14/16) | Aerobic exercise, strength training, educational discussions | 6 weeks 2 sessions/week Borg breathlessness scale and rate of perceived exertion were used for progression | Symptoms: yes Quality of life: yes Physical fitness: yes Pulmonary parameters: n. m. No serious adverse events | Score 3 out of 4 (moderate) |
Colas et al., 2023, [63] | 38 46.9 ± 12.7 (21/17) | Aerobic exercise, resistance exercise, educational sessions | 4 weeks 3 sessions/week each for 2 h 2 sessions/week: aerobic exercise 90 min, resistance exercise 30 min | Symptoms: n. m. Quality of life: n. m. Physical fitness: yes Pulmonary parameters: yes | Score 3 out of 4 (moderate) |
MULTIDISCIPLINARY REHABILITATION PROGRAM | |||||
Halvorsen et al., 2024, [64] | 20 62.35 ± 14.02 (11/9) | HIT (endurance), respiratory training, occupational therapy, speech and language pathology | Median 10 sessions in total 5 sessions/week HIT: 4 sessions/week, 60 min/session 70–85% of the age-predicted HRmax Used RPE (14–17/20), monitoring of HR and oxygen saturation | Symptoms: n. m. Quality of life: yes Physical fitness: yes Pulmonary parameters: yes Some adverse events | Score 2 out of 4 (poor) |
Gloeckl et al., 2021, [65] | 50 (28/22) | Endurance, strength and ADL training, relaxation, respiratory physiotherapy, occupational therapy, psychological and nutritional support, education | 3 weeks 5 days/week 60–70% of peak work rate | Symptoms: n. m. Quality of life: yes Physical fitness: yes Pulmonary Parameters: yes No adverse events | Score 3 out of 4 (moderate) |
Hasting et al., 2023, [66] | 33 49.2 ± 9.8 (24/9) | Neuropsychological treatment, pacing, relaxation and mindfulness techniques, cognitive training, speech and language therapy, physiotherapy (strength, fitness training, mobilization, stretching, breathing exercises), psychoeducation, nutritional counseling, social and medical consultation | 3 weeks 10 treatment days: 3–4 units/day Physiotherapy: using pacing to adopt optimal activity rhythm (light to moderate intensity) | Symptoms: yes Quality of life: yes Physical fitness: n. m. Pulmonary parameters: n. m. | Score 2 out of 4 (poor) |
Hayden et al., 2021, [67] | 53 (28/25) | Physical training (endurance and strength training, vibration training, inspiratory muscle training), respiratory physiotherapy, general physiotherapy, occupational therapy, education, medical diagnostics, psychological and nutritional support | 3 weeks 7 days/week 19–21 sessions/week 21–60 min Intensity based on initial 6 MWT Used RPE (4–6/10), oxygen saturation ≥90%, HR monitoring | Symptoms: yes Quality of life: yes Physical fitness: yes Pulmonary parameters: yes | Score 3 out of 4 (moderate) |
Kesikburun et al., 2023, [68] | 39 59.7 ± 15.6 (15/24) | Mobilization, progressive muscle strengthening, balance and coordination, FES cycling, cardiopulmonary rehabilitation: aerobic exercise, muscle strengthening, breathing exercise, speech, language and occupational therapy, psychological and nutritional support | 6 weeks 30 sessions 5 days/week, 1 h/session Monitoring of blood pressure, HR and oxygen saturation in each session | Symptoms: yes Quality of life: yes Physical fitness: n. m. Pulmonary parameters: n. m. | Score 2 out of 4 (poor) |
Nopp et al., 2022, [69] | 58 47 (25/33) | Individualized endurance, strength and inspiratory muscle training Education, psychosocial counseling, nutritional education, smoking cessation sessions | 6 weeks 3 sessions/week, 3–4 h each | Symptoms: yes Quality of life: yes Physical fitness: yes Pulmonary parameters: yes No adverse events | Score 3 out of 4 (moderate) |
Grishechkina et al., 2023, [70] | 113 58.4 (83/30) | IG: aquatic, respiratory and motor exercises, social integration training, neuropsychologic sessions, LASER therapy, magnetotherapy CG 1: eastern medicine techniques CG 2: respiratory and motor exercise therapy, physiotherapy combined with inhalation, balneo- and magnetotherapy CG 3: self-training and home-based physical exercise | IG: 7–8 sessions CG 1: 7–8 sessions CG 2: 10–15 sessions CG 3: ?? | CGs: more hospital admissions, need for specialist consultations and ambulance calls | Score 2 out of 4 (poor) |
MULTIDISCIPLINARY REHABILITATION PROGRAM (ROBOT) | |||||
Zasadzka et al., 2022, [71] | 28 (10/18) | Neuromuscular re-education techniques, coordination, balance, progressive endurance training, psychologist, speech and occupational therapy IG: EMG-rehabilitation robot | 6 weeks 6 days/week IG: 75 min, CG: 120 min Progressive endurance training: 30 min, 35–70% HRmax IG: EMG-rehabilitation robot (6 days/week, 45 min/day in 2 sessions) | Symptoms: yes Quality of life: yes Physical fitness: yes Pulmonary parameters: n. m. No adverse events with EMG-rehabilitation robot | Score 4 out of 4 (high) |
Trzmiel et al., 2023, [72] | 81 | Neuromuscular re-education techniques, coordination, balance, progressive endurance training, psychologist, speech and occupational therapy IG: EMG-rehabilitation robot | 6 weeks 6 days/week IG: 75 min, CG: 120 min Progressive endurance training: 30 min, 35–70% HRmax IG: EMG-rehabilitation robot (6 days/week, 45 min/day in 2 sessions) | Symptoms: n. m. Quality of life: yes Physical fitness: yes Pulmonary parameters: n. m. | Score 4 out of 4 (high) |
TELEREHABILITATION | |||||
Calvo-Paniagua et al., 2022, [73] | 68 48.5 ± 9.7 (42/26) | Posture ergonomics, respiratory control, physical exercise, aerobic exercise, mobilization, motor control exercise, occupational therapy, diaphragmatic respiratory education | Up to 7 weeks 3 sessions/week, 40 min Physical conditioning with increasing intensity | Symptoms: yes Quality of life: yes Physical fitness: yes Pulmonary parameters: n. m. No adverse events | Score 3 out of 4 (moderate) |
Bileviciute-Ljungar et al., 2024, [74] | 67 43 (52/15) | Breathing exercise, mindfulness, relaxation, muscle strength training, exercise on one’s own, psychoeducation | 8 weeks 3 days/week for 2 h 3 h exercise on one’s own | Symptoms: yes Quality of life: yes Physical fitness: yes Pulmonary parameters: n. m. Some reported a worsening of symptoms | Score 3 out of 4 (moderate) |
Estebanez-Pérez et al., 2022, [75] | 32 45.93 (23/9) | Physiotherapy: patient education, aerobic exercise, strength and training exercises, breathing exercises, recommendations for secretion drainage and ventilatory techniques | 4 weeks Limit: one session/day, 45–50 min Progression of intensity and duration depends on sensation of fatigue and/or dyspnea (strength training: 5–10%/week) | Symptoms: n. m. Quality of life: n. m. Physical fitness: yes Pulmonary parameters: n. m. No adverse events | Score 3 out of 4 (moderate) |
Colas et al., 2022, [76] | 15 52.1± 12.2 Both sexes | IG: aerobic exercise, resistance exercise, therapeutic education workshops, psychological and nutritional support CG: physiotherapy: delivery of a training booklet with test results of the initial evaluation, psychological and nutritional support | 4 weeks 3 sessions/week Used RPE (2–6/10 for), monitoring of HR and RPE training stopped when HR >80% HRmax or RPE >6/10 | Symptoms: yes Quality of life: n. m. Physical fitness: yes Pulmonary parameters: yes No adverse events | Score 2 out of 4 (poor) |
Reis et al., 2023, [77] | 49 (26/23) | IG: ventilatory control training, aerobic exercise, muscle strengthening exercise, respiratory muscle training, flexibility, balance CG: usual care: initial clinical evaluation, management of the therapeutic regimen, education and training relative to their health status | 12 weeks 2–3 sessions/week (38 sessions of 60 min) Intensity was adapted according to the perception of dyspnea according to the modified Borg scale (RPE 4–5/10) Monitoring of HR and oxygen saturation | Symptoms: yes Quality of life: yes Physical fitness: yes Pulmonary parameters: n. m. No adverse events | Score 3 out of 4 (moderate) |
Rodriguz-Blanco et al., 2023, [78] | 48 (26/22) | IG: therapeutic exercise program CG: relative home rest consisting of ADLs | 14 days 1 session/day Used modified Borg scale for intensity | Symptoms: yes Quality of life: n. m. Physical fitness: yes Pulmonary parameters: n. m. | Score 4 out of 4 (high) |
McGregor et al., 2024, [79] | 585 56 ± 12 (305/280) | IG: group exercise, psychological support, on-demand library of physical activity (circuit, Interval, aerobic, breathing exercise, Pilates, yoga) CG: usual care: best practice usual care consisting of online, one-to-one consultation with a trained practitioner | 1–8 weeks 3–4 sessions/week, 30–60 min CG: one session 30 min | Symptoms: yes Quality of life: yes Physical fitness: n. m. Pulmonary parameters: n. m. Several and serious adverse events | Score 3 out of 4 (moderate) |
VR TECHNOLOGY | |||||
Rutkowski et al., 2022, [80] | 32 57.8 ± 4.9 (20/12) | Exercise capacity, walking and resistance training, general fitness exercise, circuit training, breathing exercise, relaxation, techniques for removing secretions from the bronchial tree, inhalations VR group: cycling and relaxation with VR googles | 3 weeks 5 sessions/week Cycling: intensity based on patient’s submaximal exercise tolerance test results 20–80% of the submaximal HR | Symptoms: yes Quality of life: no Physical fitness: yes Pulmonary parameters: n. m. | Score 4 out of 4 (high) |
Rutkowski et al., 2023, [81] | 32 57.8 ± 4.92 (20/12) | Exercise capacity training, walking training, resistance training, general fitness exercise, circuit training, breathing exercise, relaxation, techniques for removing secretions from the bronchial tree, inhalations VR group: cycling and relaxation with VR googles | 3 weeks 5 sessions/week Cycling: intensity based on patient’s distance and dyspnea rating in 6 MWT 20–90% of HR peak | Symptoms: yes Quality of life: n. m. Physical fitness: yes Pulmonary parameters: no | Score 4 out of 4 (high) |
PACING | |||||
Parker et al., 2023, [82] | 31 47 ± 9 (22/9) | WHO Borg CR-10 pacing protocol for physical activity guidance | 6 weeks Using WHO Borg CR-10 pacing protocol Used RPE for progression | Symptoms: n. m. Quality of life: yes Physical fitness: n. m. Pulmonary parameters: n. m. Less average number of PESE episodes | Score 2 out of 4 (poor) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krüger, A.-L.; Haiduk, B.; Grau, M. Identifying Factors That Might Affect Outcomes of Exercise-Based Therapies in Long-COVID. Diseases 2024, 12, 293. https://doi.org/10.3390/diseases12110293
Krüger A-L, Haiduk B, Grau M. Identifying Factors That Might Affect Outcomes of Exercise-Based Therapies in Long-COVID. Diseases. 2024; 12(11):293. https://doi.org/10.3390/diseases12110293
Chicago/Turabian StyleKrüger, Anna-Lena, Björn Haiduk, and Marijke Grau. 2024. "Identifying Factors That Might Affect Outcomes of Exercise-Based Therapies in Long-COVID" Diseases 12, no. 11: 293. https://doi.org/10.3390/diseases12110293
APA StyleKrüger, A. -L., Haiduk, B., & Grau, M. (2024). Identifying Factors That Might Affect Outcomes of Exercise-Based Therapies in Long-COVID. Diseases, 12(11), 293. https://doi.org/10.3390/diseases12110293