The Effect of Organic Vegetable Mixed Juice on Blood Circulation and Intestine Flora: Randomized, Double-Blinded, Placebo-Controlled Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Study Participants and Inclusion/Exclusion Criteria
2.3. Study Design
2.4. Outcome Measures
2.5. Safety
2.6. Statistical Analysis
2.7. Fecal Microbiome Analysis
2.7.1. Sample Handling and Collection
2.7.2. 16S rRNA Gene Amplicon Sequencing
2.7.3. Analysis of Operational Taxonomic Units (OTUs) Microbiome Analysis
3. Results
3.1. Enrollment (Participant Baseline Characteristics)
3.2. Efficacy Analysis
3.2.1. Biochemical Measurements (Lipid Profile Measurement)
3.2.2. Biochemical Measurements (Antioxidant Measurements)
3.2.3. Biochemical Measurements (Blood Circulation-Related Measurements)
3.3. Microbiome Analysis
3.3.1. Analysis of Microbiome Diversity and OTU Classification
3.3.2. Functional Profiling Using the KEGG Pathway
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, J.; Zhou, Y.; Li, S.; Zhang, P.; Zhou, T.; Xu, D.-P.; Li, H.-B. Effects and mechanisms of fruit and vegetable juices on cardiovascular diseases. Int. J. Mol. Sci. 2017, 18, 555. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, A.; Tillin, T.; O’Connor, L.; Brage, S.; Hughes, A.; Mayet, J.; McKeigue, P.; Whincup, P.; Chaturvedi, N.; Forouhi, N.G. The impact of health behaviours on incident cardiovascular disease in Europeans and South Asians–a prospective analysis in the UK SABRE study. PLoS ONE 2015, 10, e0117364. [Google Scholar] [CrossRef] [PubMed]
- Okuda, N.; Miura, K.; Okayama, A.; Okamura, T.; Abbott, R.; Nishi, N.; Fujiyoshi, A.; Kita, Y.; Nakamura, Y.; Miyagawa, N. Fruit and vegetable intake and mortality from cardiovascular disease in Japan: A 24-year follow-up of the NIPPON DATA80 Study. Eur. J. Clin. Nutr. 2015, 69, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Sikand, G.; Kris-Etherton, P.; Boulos, N.M. Impact of functional foods on prevention of cardiovascular disease and diabetes. Curr. Cardiol. Rep. 2015, 17, 39. [Google Scholar] [CrossRef]
- Bhardwaj, R.L.; Nandal, U.; Pal, A.; Jain, S. Bioactive compounds and medicinal properties of fruit juices. Fruits 2014, 69, 391–412. [Google Scholar] [CrossRef]
- Peluso, I.; Villano, D.V.; Roberts, S.A.; Cesqui, E.; Raguzzini, A.; Borges, G.; Crozier, A.; Catasta, G.; Toti, E.; Serafini, M. Consumption of mixed fruit-juice drink and vitamin C reduces postprandial stress induced by a high fat meal in healthy overweight subjects. Curr. Pharm. Des. 2014, 20, 1020–1024. [Google Scholar] [CrossRef]
- Rodríguez-Roque, M.J.; Rojas-Graü, M.A.; Elez-Martínez, P.; Martín-Belloso, O. In vitro bioaccessibility of health-related compounds as affected by the formulation of fruit juice-and milk-based beverages. Food Res. Int. 2014, 62, 771–778. [Google Scholar] [CrossRef]
- Tomé-Carneiro, J.; Visioli, F. Polyphenol-based nutraceuticals for the prevention and treatment of cardiovascular disease: Review of human evidence. Phytomedicine 2016, 23, 1145–1174. [Google Scholar] [CrossRef]
- Adebawo, O.; Salau, B.; Adeyanju, M.; Famodu, A.; Osilesi, O. Fruits and vegetables moderate blood pressure, fibrinogen concentration and plasma viscosity in Nigerian hypertensives. Afr. J. Food Agric. Nutr. Dev. 2007, 7, 1–12. [Google Scholar] [CrossRef]
- Terry, P.; Terry, J.; Wolk, A. Fruit and vegetable consumption in the prevention of cancer: An update. J. Intern. Med. 2001, 250, 280–290. [Google Scholar] [CrossRef]
- Hyson, D.A. A comprehensive review of apples and apple components and their relationship to human health. Adv. Nutr. 2011, 2, 408–420. [Google Scholar] [CrossRef] [PubMed]
- Aptekmann, N.P.; Cesar, T.B. Long-term orange juice consumption is associated with low LDL-cholesterol and apolipoprotein B in normal and moderately hypercholesterolemic subjects. Lipids Health Dis. 2013, 12, 119. [Google Scholar] [CrossRef] [PubMed]
- Palozza, P.; Catalano, A.; Simone, R.E.; Mele, M.C.; Cittadini, A. Effect of lycopene and tomato products on cholesterol metabolism. Ann. Nutr. Metab. 2012, 61, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Amagase, H.; Sun, B.; Borek, C. Lycium barbarum (goji) juice improves in vivo antioxidant biomarkers in serum of healthy adults. Nutr. Res. 2009, 29, 19–25. [Google Scholar] [CrossRef]
- Young, V.B. The role of the microbiome in human health and disease: An introduction for clinicians. BMJ 2017, 356, j831. [Google Scholar] [CrossRef]
- Carding, S.; Verbeke, K.; Vipond, D.T.; Corfe, B.M.; Owen, L.J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 2015, 26, 26191. [Google Scholar] [CrossRef]
- Singh, R.K.; Chang, H.-W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017, 15, 73. [Google Scholar] [CrossRef]
- Henning, S.M.; Yang, J.; Shao, P.; Lee, R.-P.; Huang, J.; Ly, A.; Hsu, M.; Lu, Q.-Y.; Thames, G.; Heber, D. Health benefit of vegetable/fruit juice-based diet: Role of microbiome. Sci. Rep. 2017, 7, 2167. [Google Scholar] [CrossRef]
- Wicaksono, W.A.; Cernava, T.; Wassermann, B.; Abdelfattah, A.; Soto-Giron, M.J.; Toledo, G.V.; Virtanen, S.M.; Knip, M.; Hyöty, H.; Berg, G. The edible plant microbiome: Evidence for the occurrence of fruit and vegetable bacteria in the human gut. Gut Microbes 2023, 15, 2258565. [Google Scholar] [CrossRef]
- Van der Merwe, M. Gut microbiome changes induced by a diet rich in fruits and vegetables. Int. J. Food Sci. Nutr. 2021, 72, 665–669. [Google Scholar] [CrossRef]
- Lakshmanan, A.P.; Mingione, A.; Pivari, F.; Dogliotti, E.; Brasacchio, C.; Murugesan, S.; Cusi, D.; Lazzaroni, M.; Soldati, L.; Terranegra, A. Modulation of gut microbiota: The effects of a fruits and vegetables supplement. Front. Nutr. 2022, 9, 930883. [Google Scholar] [CrossRef] [PubMed]
- Tomova, A.; Bukovsky, I.; Rembert, E.; Yonas, W.; Alwarith, J.; Barnard, N.D.; Kahleova, H. The effects of vegetarian and vegan diets on gut microbiota. Front. Nutr. 2019, 6, 447652. [Google Scholar] [CrossRef] [PubMed]
- Baxter, N.T.; Schmidt, A.W.; Venkataraman, A.; Kim, K.S.; Waldron, C.; Schmidt, T.M. Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. MBio 2019, 10, e02566-18. [Google Scholar] [CrossRef] [PubMed]
- Fuller, S.; Beck, E.; Salman, H.; Tapsell, L. New horizons for the study of dietary fiber and health: A review. Plant Foods Hum. Nutr. 2016, 71, 1–12. [Google Scholar] [CrossRef]
- Zhou, D.-D.; Luo, M.; Shang, A.; Mao, Q.-Q.; Li, B.-Y.; Gan, R.-Y.; Li, H.-B. Antioxidant food components for the prevention and treatment of cardiovascular diseases: Effects, mechanisms, and clinical studies. Oxidative Med. Cell. Longev. 2021, 2021, 6627355. [Google Scholar] [CrossRef]
- Hills, R.D.; Pontefract, B.A.; Mishcon, H.R.; Black, C.A.; Sutton, S.C.; Theberge, C.R. Gut microbiome: Profound implications for diet and disease. Nutrients 2019, 11, 1613. [Google Scholar] [CrossRef]
- Ohira, H.; Tsutsui, W.; Fujioka, Y. Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis? J. Atheroscler. Thromb. 2017, 24, 660–672. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2: An improved and customizable approach for metagenome inference. bioRxiv 2020. [Google Scholar] [CrossRef]
- Singh, N.; Singh, N.; Kumar Singh, S.; Kumar Singh, A.; Kafle, D.; Agrawal, N. Reduced Antioxidant Potential of LDL Is Associated With Increased Susceptibility to LDL Peroxidation in Type II Diabetic Patients. Int. J. Endocrinol. Metab. 2012, 10, 582–586. [Google Scholar] [CrossRef]
- Oh, J.; Jung, Y.; Kim, J.; Min, S.K.; Han, S.W.; Baik, J.S. Variation in blood viscosity based on the potential cause of stroke of undetermined etiology. Cardiovasc. Prev. Pharmacother. 2023, 5, 144–150. [Google Scholar] [CrossRef]
- Stamos, T.D.; Rosenson, R.S. Low high density lipoprotein levels are associated with an elevated blood viscosity. Atherosclerosis 1999, 146, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Story, E.N.; Kopec, R.E.; Schwartz, S.J.; Harris, G.K. An Update on the Health Effects of Tomato Lycopene. Annu. Rev. Food Sci. Technol. 2010, 1, 189–210. [Google Scholar] [CrossRef] [PubMed]
- Mozos, I.; Stoian, D.; Caraba, A.; Malainer, C.; Horbańczuk, J.O.; Atanasov, A.G. Lycopene and Vascular Health. Front. Pharmacol. 2018, 9, 521. [Google Scholar] [CrossRef] [PubMed]
- Paiva, S.A.; Russell, R.M. Beta-carotene and other carotenoids as antioxidants. J. Am. Coll. Nutr. 1999, 18, 426–433. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, S.; Shekhar, C. Nutritional components in green leafy vegetables: A review. J. Pharmacogn. Phytochem. 2020, 9, 2498–2502. [Google Scholar]
- Roberfroid, M. Dietary fiber, inulin, and oligofructose: A review comparing their physiological effects. Crit. Rev. Food Sci. Nutr. 1993, 33, 103–148. [Google Scholar] [CrossRef]
- Ötles, S.; Ozgoz, S. Health effects of dietary fiber. Acta Sci. Pol. Technol. Aliment. 2014, 13, 191–202. [Google Scholar] [CrossRef]
- Kim, M.Y.; Cheong, S.H.; Kim, M.H.; Son, C.; Yook, H.-S.; Sok, D.-E.; Kim, J.H.; Cho, Y.; Chun, H.; Kim, M.R. Leafy vegetable mix supplementation improves lipid profiles and antioxidant status in C57BL/6J mice fed a high fat and high cholesterol diet. J. Med. Food 2009, 12, 877–884. [Google Scholar] [CrossRef]
- El Hage, R.; Al-Arawe, N.; Hinterseher, I. The Role of the Gut Microbiome and Trimethylamine Oxide in Atherosclerosis and Age-Related Disease. Int. J. Mol. Sci. 2023, 24, 2399. [Google Scholar] [CrossRef]
- Panyod, S.; Wu, W.-K.; Chen, P.-C.; Chong, K.-V.; Yang, Y.-T.; Chuang, H.-L.; Chen, C.-C.; Chen, R.-A.; Liu, P.-Y.; Chung, C.-H.; et al. Atherosclerosis amelioration by allicin in raw garlic through gut microbiota and trimethylamine-N-oxide modulation. NPJ Biofilms Microbiomes 2022, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Zhen, J.; Zhou, Z.; He, M.; Han, H.-X.; Lv, E.-H.; Wen, P.-B.; Liu, X.; Wang, Y.-T.; Cai, X.-C.; Tian, J.-Q.; et al. The gut microbial metabolite trimethylamine N-oxide and cardiovascular diseases. Front. Endocrinol. 2023, 14, 1085041. [Google Scholar] [CrossRef]
- Levine, U.Y.; Bearson, S.M.D.; Stanton, T.B. Mitsuokella jalaludinii inhibits growth of Salmonella enterica serovar Typhimurium. Vet. Microbiol. 2012, 159, 115–122. [Google Scholar] [CrossRef]
- Gryaznova, M.; Smirnova, Y.; Burakova, I.; Morozova, P.; Lagutina, S.; Chizhkov, P.; Korneeva, O.; Syromyatnikov, M. Fecal Microbiota Characteristics in Constipation-Predominant and Mixed-Type Irritable Bowel Syndrome. Microorganisms 2024, 12, 1414. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Park, J.; Jang, J.-K.; Lee, B.-H.; Park, Y.-S. Structural Analysis of Gluco-Oligosaccharides Produced by Leuconostoc lactis and Their Prebiotic Effect. Molecules 2019, 24, 3998. [Google Scholar] [CrossRef] [PubMed]
- Eom, H.-J.; Seo, D.M.; Han, N.S. Selection of psychrotrophic Leuconostoc spp. producing highly active dextransucrase from lactate fermented vegetables. Int. J. Food Microbiol. 2007, 117, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Borhanudin, N.; Li, F.; Faiq, M.E.; Cheng, L. Investigation of the Pectin Degradation Ability of Hominibacterium faecale Strain SF3T Isolated from Human Feces. Asian J. Biol. 2022, 15, 38–44. [Google Scholar] [CrossRef]
- Xiao, Y.; Guo, Z.; Li, Z.; Ling, H.; Song, C. Role and mechanism of action of butyrate in atherosclerotic diseases: A review. J. Appl. Microbiol. 2021, 131, 543–552. [Google Scholar] [CrossRef]
- Li, Z.; Yi, C.-X.; Katiraei, S.; Kooijman, S.; Zhou, E.; Chung, C.K.; Gao, Y.; van den Heuvel, J.K.; Meijer, O.C.; Berbée, J.F. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut 2018, 67, 1269–1279. [Google Scholar] [CrossRef]
- Hu, S.; Kuwabara, R.; de Haan, B.J.; Smink, A.M.; de Vos, P. Acetate and butyrate improve β-cell metabolism and mitochondrial respiration under oxidative stress. Int. J. Mol. Sci. 2020, 21, 1542. [Google Scholar] [CrossRef]
- Lee, W.-S.; Ham, W.; Kim, J. Roles of NAD (P) H: Quinone oxidoreductase 1 in diverse diseases. Life 2021, 11, 1301. [Google Scholar] [CrossRef]
- Averill-Bates, D.A. The antioxidant glutathione. In Vitamins and Hormones; Elsevier: Amsterdam, The Netherlands, 2023; Volume 121, pp. 109–141. [Google Scholar] [CrossRef]
Ingredients | OVJ | Daily Value |
---|---|---|
Calories (kcal/200 mL) | 106.69 | - |
Carbohydrate (g/200 mL) | 21.69 | 324 g |
Sugars (g/200 mL) | 19.60 | 100 g |
Crude protein (g/200 mL) | 2.37 | 55 g |
Crude fat (g/200 mL) | 1.16 | 54 g |
Saturated fat (g/200 mL) | 0.27 | 15 g |
Trans fat (g/200 mL) | 0.00 | - |
Cholesterol (mg/200 mL) | 0.00 | 300 mg |
Na (mg/200 mL) | 112.40 | 2000 mg |
Fiber (g/200 mL) | 4.69 | 25 g |
Functional Ingredients | Content (μg/200 mL) |
---|---|
Lycopene | 12,929.22 |
β-Carotene | 22,862.91 |
Variables | Placebo (n = 26) | OVJ (n = 25) | p-Value |
---|---|---|---|
Sex (n, female/male) | 15/11 | 14/11 | >0.99 (C) |
Smoker (Y/N) | 3/23 | 4/21 | 0.7030 (F) |
Drinker (Y/N) | 18/8 | 21/4 | 0.3613 (C) |
Age (years) | 37.08 ± 1.88 | 36.72 ± 1.71 | 0.8889 (W) |
Weight (kg) | 74.08 ± 2.23 | 72.4 ± 2.80 | 0.6408 (T) |
BMI (kg/m2) | 26.45 ± 0.48 | 25.64 ± 0.60 | 0.2937 (T) |
SBP (mmHg) | 124.69 ± 2.21 | 127.28 ± 2.26 | 0.4168 (T) |
DBP (mmHg) | 77.62 ± 1.90 | 76.40 ± 1.80 | 0.6441 (W) |
Variables | Placebo (n = 26) | OVJ (n = 25) | p-Value a | p-Value b | ||||
---|---|---|---|---|---|---|---|---|
Baseline | 4 Weeks | Change | Baseline | 4 Weeks | Change | |||
Total cholesterol (mmol/L) | 11.99 ± 0.06 | 12.44 ± 0.07 | 0.45 ± 0.05 | 12.14 ± 0.09 | 11.74 ± 0.09 | −0.40 ± 0.05 | 0.0252 (T) * | 0.7898 (T) |
Triglyceride (mmol/L) | 6.69 ± 0.14 | 8.40 ± 0.34 | 1.70 ± 0.25 | 6.86 ± 0.18 | 6.09 ± 0.15 | −0.78 ± 0.16 | 0.0428 (W) * | 0.7702 (W) |
HDL cholesterol (mmol/L) | 3.54 ± 0.04 | 3.31 ± 0.04 | −0.23 ± 0.02 | 3.44 ± 0.03 | 3.47 ± 0.03 | 0.03 ± 0.02 | 0.5457 (W) | 0.7069 (W) |
LDL cholesterol (mmol/L) | 7.40 ± 0.05 | 7.65 ± 0.06 | 0.25 ± 0.05 | 7.56 ± 0.07 | 7.15 ± 0.08 | −0.41 ± 0.04 | 0.0435 (T) * | 0.7277 (T) |
ApoB (mmol/L) | 5.10 ± 0.03 | 5.29 ± 0.03 | 0.19 ± 0.02 | 5.22 ± 0.05 | 4.91 ± 0.05 | −0.32 ± 0.02 | 0.0043 (T) ** | 0.6665 (W) |
VLDL (mmol/L) | 1.06 ± 0.02 | 1.48 ± 0.05 | 0.43 ± 0.04 | 1.08 ± 0.03 | 1.12 ± 0.02 | 0.04 ± 0.02 | 0.1867 (W) | 0.7483 (W) |
Variables | Placebo (n = 26) | OVJ (n = 25) | p-Value a | p-Value b | ||||
---|---|---|---|---|---|---|---|---|
Baseline | 4 Weeks | Change | Baseline | 4 Weeks | Change | |||
Catalase (ng/mL) | 1829.77 ± 94.40 | 2085.36 ± 107.67 | 255.59 ± 22.69 | 2102.98 ± 144.92 | 2252.67 ± 134.95 | 149.69 ± 43.67 | 0.6707 (T) | 0.1218 (T) |
Malondialdehyde (ng/mL) | 0.43 ± 0.01 | 0.47 ± 0.02 | 0.04 ± 0.01 | 0.52 ± 0.02 | 0.57 ± 0.02 | 0.04 ± 0.01 | 0.6839 (W) | 0.3201 (W) |
SOD (ng/mL) | 2.19 ± 0.20 | 2.05 ± 0.18 | −0.15 ± 0.02 | 1.97 ± 0.12 | 2.07 ± 0.15 | 0.10 ± 0.02 | 0.0440 (T) * | 0.5719 (W) |
GSH (μg/mL) | 16.2 ± 1.32 | 17.06 ± 1.55 | 0.86 ± 0.10 | 14.65 ± 1.02 | 16.77 ± 1.16 | 2.13 ± 0.08 | 0.0547 (W) | 0.2622 (W) |
Ox LDL (ng/mL) | 116.69 ± 6.69 | 104.55 ± 6.06 | −12.13 ± 1.54 | 123.13 ± 10.75 | 109.43 ± 8.47 | −13.7 ± 2.01 | 0.9029 (W) | >0.99 (W) |
Variables | Placebo (n = 26) | OVJ (n = 25) | p-Value a | p-Value b | ||||
---|---|---|---|---|---|---|---|---|
Baseline | 4 Weeks | Change | Baseline | 4 Weeks | Change | |||
e-NOS (ng/mL) | 0.64 ± 0.49 | 0.69 ± 0.53 | 0.05 ± 0.31 | 0.82 ± 0.02 | 0.86 ± 0.02 | 0.04 ± 0.01 | 0.7437 (W) | 0.1617 (W) |
Thromboxane B2 (ng/mL) | 8.80 ± 2.52 | 9.94 ± 2.81 | 1.15 ± 0.47 | 8.60 ± 2.37 | 15.13 ± 7.09 | 6.54 ± 1.51 | 0.8728 (W) | 0.6579 (W) |
PT (s) | 13.36 ± 0.12 | 13.38 ± 0.11 | 0.02 ± 0.02 | 13.36 ± 0.10 | 13.47 ± 0.10 | 0.11 ± 0.02 | 0.5543 (T) | 0.9713 (T) |
aPTT (s) | 34.77 ± 0.57 | 35.57 ± 0.48 | 0.79 ± 0.08 | 35.78 ± 0.67 | 36.90 ± 0.76 | 1.12 ± 0.08 | 0.3460 (T) | 0.2600 (T) |
SBV (cP) | 4.94 ± 0.16 | 4.99 ± 0.15 | 0.05 ± 0.02 | 5.21 ± 0.16 | 4.92 ± 0.15 | −0.28 ± 0.02 | 0.0264 (T) * | 0.2454 (T) |
DBV (cP) | 14.92 ± 0.41 | 15.00 ± 0.42 | 0.25 ± 0.06 | 15.43 ± 0.41 | 14.7 ± 0.44 | −0.73 ± 0.06 | 0.0183 (T) * | 0.2440 (T) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-H.; Lee, J.-H.; Jeon, S.-M.; Park, I.-K.; Jang, H.-B.; Kim, S.-A.; Park, S.-D.; Shim, J.-J.; Hong, S.-S.; Lee, J.-H. The Effect of Organic Vegetable Mixed Juice on Blood Circulation and Intestine Flora: Randomized, Double-Blinded, Placebo-Controlled Clinical Trial. Diseases 2024, 12, 223. https://doi.org/10.3390/diseases12090223
Lee Y-H, Lee J-H, Jeon S-M, Park I-K, Jang H-B, Kim S-A, Park S-D, Shim J-J, Hong S-S, Lee J-H. The Effect of Organic Vegetable Mixed Juice on Blood Circulation and Intestine Flora: Randomized, Double-Blinded, Placebo-Controlled Clinical Trial. Diseases. 2024; 12(9):223. https://doi.org/10.3390/diseases12090223
Chicago/Turabian StyleLee, Yun-Ha, Jae-Ho Lee, Soo-Min Jeon, Il-Kyu Park, Hyun-Bin Jang, Soo-A Kim, Soo-Dong Park, Jae-Jung Shim, Seong-Soo Hong, and Jae-Hwan Lee. 2024. "The Effect of Organic Vegetable Mixed Juice on Blood Circulation and Intestine Flora: Randomized, Double-Blinded, Placebo-Controlled Clinical Trial" Diseases 12, no. 9: 223. https://doi.org/10.3390/diseases12090223
APA StyleLee, Y. -H., Lee, J. -H., Jeon, S. -M., Park, I. -K., Jang, H. -B., Kim, S. -A., Park, S. -D., Shim, J. -J., Hong, S. -S., & Lee, J. -H. (2024). The Effect of Organic Vegetable Mixed Juice on Blood Circulation and Intestine Flora: Randomized, Double-Blinded, Placebo-Controlled Clinical Trial. Diseases, 12(9), 223. https://doi.org/10.3390/diseases12090223