Targeting Soluble Amyloid Oligomers in Alzheimer’s Disease: A Hypothetical Model Study Comparing Intrathecal Pseudodelivery of mAbs Against Intravenous Administration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patient Populations
2.3. Equations for Aβ Dynamics
2.3.1. Intrathecal Pseudodelivery Equation
- A(t): soluble Aβ concentration in the CSF at time t (pg/mL).
- A0 = 100 pg/mL: initial concentration of soluble Aβ at baseline.
- P = 180 pg/mL/month: constant production rate of soluble Aβ.
- C = 0.05 month−1: natural clearance rate of soluble Aβ.
- CIT = 0.90 month−1: therapy-induced clearance rate for intrathecal pseudodelivery [28].
2.3.2. Intravenous (IV) mAb Equation
- A(t): soluble Aβ concentration in the CSF at time t (pg/mL).
- A(t + n): soluble Aβ concentration immediately after the n-th dose (pg/mL).
- P = 180 pg/mL/month: constant production rate of soluble Aβ.
- C = 0.05 month−1: natural clearance rate of soluble Aβ.
2.4. Simulation Metrics
- Time to PET negativity (Aβ burden below 24 centiloids).
- Magnitude of CSF-Aβ reduction over time.
- Risk of amyloid reaccumulation upon therapy discontinuation.
3. Results
3.1. Amyloid Clearance Dynamics
- Time to PET Negativity:
- ○
- Intrathecal pseudodelivery of mAb achieved PET negativity at approximately 132 months.
- ○
- IV mAb reached PET negativity at 150 months.
- CSF-Aβ Reduction:
- ○
- Intrathecal pseudodelivery of mAb led to an accelerated reduction in soluble Aβ, achieving a 90% decrease in CSF-Aβ levels within 12 months.
- ○
- IV mAb showed a slower decline, with a 60% reduction over the same period.
3.2. Long-Term Effects
- Amyloid Reaccumulation:
- ○
- Upon discontinuation, amyloid reaccumulated within 12–18 months in both cohorts, but intrathecal pseudodelivery delayed PET positivity by an additional 6 months compared to IV therapy.
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Menéndez-González, M. Intrathecal Immunoselective Nanopheresis for Alzheimer’s Disease: What and How? Why and When? Int. J. Mol. Sci. 2024, 25, 10632. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.; Higgins, G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science 1992, 256, 184–185. [Google Scholar] [CrossRef] [PubMed]
- Blömeke, L.; Rehn, F.; Kraemer-Schulien, V.; Kutzsche, J.; Pils, M.; Bujnicki, T.; Lewczuk, P.; Kornhuber, J.; Freiesleben, S.D.; Schneider, L.S.; et al. Aβ oligomers peak in early stages of Alzheimer’s disease preceding tau pathology. Alzheimers Dement. 2024, 16, e12589, Erratum in: Alzheimers Dement. 2024, 16, e12599. https://doi.org/10.1002/dad2.12599. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Blömeke, L.; Rehn, F.; Pils, M.; Kraemer-Schulien, V.; Cousin, A.; Kutzsche, J.; Bujnicki, T.; Freiesleben, S.D.; Schneider, L.-S.; Preis, L.; et al. Blood-based quantification of Aβ oligomers indicates impaired clearance from brain in ApoE ε4 positive subjects. Commun. Med. 2024, 4, 262. [Google Scholar] [CrossRef]
- Tolar, M.; Hey, J.; Power, A.; Abushakra, S. Neurotoxic Soluble Amyloid Oligomers Drive Alzheimer’s Pathogenesis and Represent a Clinically Validated Target for Slowing Disease Progression. Int. J. Mol. Sci. 2020, 22, 6355. [Google Scholar] [CrossRef] [PubMed]
- Bartley, S.C.; Proctor, M.T.; Xia, H.; Ho, E.; Kang, D.S.; Schuster, K.; Bicca, M.A.; Seckler, H.S.; Viola, K.L.; Patrie, S.M.; et al. An Essential Role for Alzheimer’s-Linked Amyloid Beta Oligomers in Neurodevelopment: Transient Expression of Multiple Proteoforms During Retina Histogenesis. Int. J. Mol. Sci. 2022, 23, 2232. [Google Scholar] [CrossRef]
- Sala, A.; Nordberg, A.; Rodriguez-Vieitez, E.; Alzheimer’s Disease Neuroimaging Initiative. Longitudinal pathways of cerebrospinal fluid and positron emission tomography biomarkers of amyloid-β positivity. Mol. Psychiatry 2021, 26, 5864–5874. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Wang, Q.; Xie, S.; Chen, Z.; Fu, L.; Peng, Q.; Liang, Y.; Guo, H.; Guo, T.; Alzheimer’s Disease Neuroimaging Initiative. β-Amyloid discordance of cerebrospinal fluid and positron emission tomography imaging shows distinct spatial tau patterns. Brain Commun. 2022, 4, fcac084. [Google Scholar] [CrossRef]
- Reimand, J.; de Wilde, A.; Teunissen, C.E.; Zwan, M.; Windhorst, A.D.; Boellaard, R.; Barkhof, F.; van der Flier, W.M.; Scheltens, P.; van Berckel, B.N.M.; et al. PET and CSF amyloid-β status are differently predicted by patient features: Information from discordant cases. Alzheimers Res. Ther. 2019, 11, 100. [Google Scholar] [CrossRef]
- Mastenbroek, S.E.; Sala, A.; García, D.V.; Shekari, M.; Salvadó, G.; Lorenzini, L.; Pieperhoff, L.; Wink, A.M.; Alves, I.L.; Wolz, R.; et al. Continuous β-Amyloid CSF/PET Imbalance Model to Capture Alzheimer Disease Heterogeneity. Neurology 2024, 103, e209419. [Google Scholar] [CrossRef]
- Nicoll, J.A.R.; Buckland, G.R.; Harrison, C.H.; Page, A.; Harris, S.; Love, S.; Neal, J.W.; Holmes, C.; Boche, D. Persistent neuropathological effects 14 years following amyloid-β immunization in Alzheimer’s disease. Brain 2019, 142, 2113–2126. [Google Scholar] [CrossRef]
- DiFrancesco, J.C.; Longoni, M.; Piazza, F. Anti-Aβ Autoantibodies in Amyloid-Related Imaging Abnormalities (ARIA): Candidate Biomarker for Immunotherapy in Alzheimer’s Disease and Cerebral Amyloid Angiopathy. Front. Neurol. 2015, 6, 207. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, A.M.; Leite, M.; Lopes, L.M.; Lima, P.G.; Barros, M.L.S.; Pinheiro, S.R.; Andrade, I.; Viana, P.; Morbach, V.; Marinheiro, G.; et al. Gantenerumab for early Alzheimer’s disease: A systematic review and meta-analysis. Expert Rev. Neurother. 2024, 24, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Collij, L.E.; Bollack, A.; La Joie, R.; Shekari, M.; Bullich, S.; Roé-Vellvé, N.; Koglin, N.; Jovalekic, A.; Garciá, D.V.; Drzezga, A.; et al. Centiloid recommendations for clinical context-of-use from the AMYPAD consortium. Alzheimer’s Dement. 2024, 20, 9037–9048. [Google Scholar] [CrossRef]
- Schindler, S.E.; Johnson, S.C.; Fox, N.C.; Bateman, R.J. PET amyloid imaging for early detection and monitoring of Alzheimer’s disease. Alzheimer’s Res. Ther. 2024, 16. [Google Scholar]
- Avgerinos, K.I.; Ferrucci, L.; Kapogiannis, D. Effects of monoclonal antibodies against amyloid-β on clinical and biomarker outcomes and adverse event risks: A systematic review and meta-analysis of phase III RCTs in Alzheimer’s disease. Ageing Res. Rev. 2021, 68, 101339. [Google Scholar] [CrossRef]
- Dantas, J.M.; Mutarelli, A.; Navalha, D.D.P.; Dagostin, C.S.; Romeiro, P.H.C.L.; Felix, N.; Nogueira, A.; Batista, S.; Teixeira, L. Efficacy of therapy with anti-amyloid-ß monoclonal antibodies in early Alzheimer’s disease: A systematic review and meta-analysis. Neurol. Sci. 2024, 45, 2461–2469. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.Y.; Villain, N.; Ayton, S.F.; Ackley, S.F.; Planche, V.; Howard, R.; Thambisetty, M. Key questions for the evaluation of anti-amyloid immunotherapies for Alzheimer’s disease. Brain Commun. 2023, 5, fcad175. [Google Scholar] [CrossRef]
- Siemers, E.; Hitchcock, J.; Sundell, K.; Dean, R.; Jerecic, J.; Cline, E.; Iverson, K.; Moore, J.; Edgar, C.; Manber, R.; et al. ACU193, a Monoclonal Antibody that Selectively Binds Soluble Aβ Oligomers: Development Rationale, Phase 1 Trial Design, and Clinical Development Plan. J. Prev. Alzheimers Dis. 2023, 10, 19–24. [Google Scholar] [CrossRef]
- Krafft, G.; Hefti, F.; Goure, W.; Jerecic, J.; Iverson, K.; Walicke, P. ACU-193: A Candidate Therapeutic Antibody that Selectively Targets Soluble Beta-Amyloid Oligomers. Alzheimers Dement. 2013, 9, P122. [Google Scholar] [CrossRef]
- Ma, K.; Martinez-Losa, M.M.; Xue, Y.Q.; Khan, A.; Ho, K.; Dodart, J.C.; Jerecic, J.; Cobos, I.; Palop, J.J. Soluble Aβ-Oligomer–Selective Antibody ACU-3B3 Reduces Amyloid Pathology and Improves Multiple Behavioral Domains in a Mouse Model of Alzheimer’s Disease. Alzheimers Dement. 2019, 15, P703. [Google Scholar] [CrossRef]
- Rozema, N.B.; Procissi, D.; Bertolino, N.; Viola, K.L.; Nandwana, V.; Abdul, N.; Pribus, S.; Dravid, V.; Klein, W.L.; Disterhoft, J.F.; et al. Aβ Oligomer Induced Cognitive Impairment and Evaluation of ACU193-MNS-Based MRI in Rabbit. Alzheimers Dement. 2020, 6, e12087. [Google Scholar] [CrossRef] [PubMed]
- Krafft, G.A.; Jerecic, J.; Siemers, E.; Cline, E.N. ACU193: An Immunotherapeutic Poised to Test the Amyloid β Oligomer Hypothesis of Alzheimer’s Disease. Front. Neurosci. 2022, 16, 848215. [Google Scholar] [CrossRef]
- Grimm, H.P.; Schumacher, V.; Schäfer, M.; Imhof-Jung, S.; Freskgård, P.-O.; Brady, K.; Hofmann, C.; Rüger, P.; Schlothauer, T.; Göpfert, U.; et al. Delivery of the Brainshuttle™ amyloid-beta antibody fusion trontinemab to non-human primate brain and projected efficacious dose regimens in humans. mAbs 2023, 15, 2261509. [Google Scholar] [CrossRef] [PubMed]
- Menéndez-González, M.; Padilla-Zambrano, H.S.; Alvarez, G.; Capetillo-Zarate, E. Targeting Beta-Amyloid at the CSF: A New Therapeutic Strategy in Alzheimer’s Disease. Front. Aging Neurosci. 2018, 10, 326515. [Google Scholar] [CrossRef] [PubMed]
- Schreiner, T.G.; Menéndez-González, M.; Popescu, B.O. The “Cerebrospinal Fluid Sink Therapeutic Strategy” in Alzheimer’s Disease—From Theory to Design of Applied Systems. Biomedicines. 2022, 10, 1509. [Google Scholar] [CrossRef]
- Gong, Y.; Chang, L.; Viola, K.L.; Lacor, P.N.; Lambert, M.P.; Finch, C.E.; Krafft, G.A.; Klein, W.L. Alzheimer’s Disease-Affected Brain: Presence of Oligomeric Aβ Ligands (ADDLs) Suggests a Molecular Basis for Reversible Memory Loss. Proc. Natl. Acad. Sci. USA 2003, 100, 10417–10422. [Google Scholar] [CrossRef]
- Hong, W.; Wang, Z.; Liu, W.; O’Malley, T.T.; Jin, M.; Willem, M.; Haass, C.; Frosch, M.P.; Walsh, D.M. Diffusible, Highly Bioactive Oligomers Represent a Critical Minority of Soluble A β in Alzheimer’s Disease Brain. Acta Neuropathol. 2018, 136, 19–40. [Google Scholar] [CrossRef] [PubMed]
- Coto-Vilcapoma, M.A.; Castilla-Silgado, J.; Fernández-García, B.; Pinto-Hernández, P.; Cipriani, R.; Capetillo-Zarate, E.; Menéndez-González, M.; Álvarez-Vega, M.; Tomás-Zapico, C. New, fully implantable device for selective clearance of CSF-target molecules: Proof of concept in a murine model of Alzheimer’s disease. Int. J. Mol. Sci. 2022, 23, 9256. [Google Scholar] [CrossRef]
- McDade, E.; Cummings, J.L.; Dhadda, S.; Swanson, C.J.; Reyderman, L.; Kanekiyo, M.; Koyama, A.; Irizarry, M.; Kramer, L.D.; Bateman, R.J. Lecanemab in patients with early Alzheimer’s disease: Detailed results on biomarker, cognitive, and clinical effects from the randomized and open-label extension of the phase 2 proof-of-concept study. Alzheimer’s Res. Ther. 2022, 14, 191. [Google Scholar] [CrossRef]
- Velasco, M.; Guijarro, C.; Barba, R.; García-Casasola, G.; Losa, J.; Zapatero, A. Opinión de los familiares sobre el uso de procedimientos invasivos en ancianos con distintos grados de demencia o incapacidad. Rev. Española Geriatría Gerontol. 2005, 40, 138–144. [Google Scholar] [CrossRef]
- Loeffler, D.A. Approaches for Increasing Cerebral Efflux of Amyloid-β in Experimental Systems. J. Alzheimers Dis. 2024, 100, 379–411. [Google Scholar] [CrossRef] [PubMed]
Delivery Method | Target | Efficacy | Safety | Invasiveness | Key Limitations |
---|---|---|---|---|---|
IV mAB | Soluble and insoluble Aβ | Gradual clearance; slower PET negativity | High ARIA risk (up to 30%); systemic side effects | Minimally invasive (IV infusions) | Limited BBB penetration; ARIA risk |
Intrathecal pseudodelivery of mAB | Soluble Aβ | Rapid clearance; faster PET negativity | No ARIA risk; no systemic side effects | Moderately invasive (subcutaneous reservoir) | Does not target insoluble plaques; stability challenges |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menendez-Gonzalez, M. Targeting Soluble Amyloid Oligomers in Alzheimer’s Disease: A Hypothetical Model Study Comparing Intrathecal Pseudodelivery of mAbs Against Intravenous Administration. Diseases 2025, 13, 17. https://doi.org/10.3390/diseases13010017
Menendez-Gonzalez M. Targeting Soluble Amyloid Oligomers in Alzheimer’s Disease: A Hypothetical Model Study Comparing Intrathecal Pseudodelivery of mAbs Against Intravenous Administration. Diseases. 2025; 13(1):17. https://doi.org/10.3390/diseases13010017
Chicago/Turabian StyleMenendez-Gonzalez, Manuel. 2025. "Targeting Soluble Amyloid Oligomers in Alzheimer’s Disease: A Hypothetical Model Study Comparing Intrathecal Pseudodelivery of mAbs Against Intravenous Administration" Diseases 13, no. 1: 17. https://doi.org/10.3390/diseases13010017
APA StyleMenendez-Gonzalez, M. (2025). Targeting Soluble Amyloid Oligomers in Alzheimer’s Disease: A Hypothetical Model Study Comparing Intrathecal Pseudodelivery of mAbs Against Intravenous Administration. Diseases, 13(1), 17. https://doi.org/10.3390/diseases13010017