Change in Estimated Glomerular Filtration Rate After Direct-Acting Antiviral Treatment in Chronic Hepatitis C Patients
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, C.H.; Kao, J.H. Acute hepatitis C virus infection: Clinical update and remaining challenges. Clin. Mol. Hepatol. 2023, 29, 623–642. [Google Scholar] [CrossRef] [PubMed]
- Polaris Observatory, H.C.V.C. Global change in hepatitis C virus prevalence and cascade of care between 2015 and 2020: A modelling study. Lancet Gastroenterol. Hepatol. 2022, 7, 396–415. [Google Scholar]
- Lauer, G.M.; Walker, B.D. Hepatitis C virus infection. N. Engl. J. Med. 2001, 345, 41–52. [Google Scholar] [CrossRef]
- Liu, C.H.; Kao, J.H. Nanomedicines in the treatment of hepatitis C virus infection in Asian patients: Optimizing use of peginterferon alfa. Int. J. Nanomed. 2014, 9, 2051–2067. [Google Scholar]
- Mazzaro, C.; Quartuccio, L.; Adinolfi, L.E.; Roccatello, D.; Pozzato, G.; Nevola, R.; Tonizzo, M.; Gitto, S.; Andreone, P.; Gattei, V. A Review on Extrahepatic Manifestations of Chronic Hepatitis C Virus Infection and the Impact of Direct-Acting Antiviral Therapy. Viruses 2021, 13, 2249. [Google Scholar] [CrossRef]
- Li, W.C.; Lee, Y.Y.; Chen, I.C.; Wang, S.H.; Hsiao, C.T.; Loke, S.S. Age and gender differences in the relationship between hepatitis C infection and all stages of Chronic kidney disease. J. Viral Hepat. 2014, 21, 706–715. [Google Scholar] [CrossRef]
- Su, F.H.; Su, C.T.; Chang, S.N.; Chen, P.C.; Sung, F.C.; Lin, C.C.; Yeh, C.C. Association of hepatitis C virus infection with risk of ESRD: A population-based study. Am. J. Kidney Dis. 2012, 60, 553–560. [Google Scholar] [CrossRef]
- Lee, J.J.; Lin, M.Y.; Chang, J.S.; Hung, C.C.; Chang, J.M.; Chen, H.C.; Yu, M.L.; Hwang, S.J. Hepatitis C virus infection increases risk of developing end-stage renal disease using competing risk analysis. PLoS ONE 2014, 9, e100790. [Google Scholar] [CrossRef]
- Molnar, M.Z.; Alhourani, H.M.; Wall, B.M.; Lu, J.L.; Streja, E.; Kalantar-Zadeh, K.; Kovesdy, C.P. Association of hepatitis C viral infection with incidence and progression of chronic kidney disease in a large cohort of US veterans. Hepatology 2015, 61, 1495–1502. [Google Scholar] [CrossRef]
- Soderholm, J.; Millbourn, C.; Busch, K.; Kovamees, J.; Schvarcz, R.; Lindahl, K.; Bruchfeld, A. Higher risk of renal disease in chronic hepatitis C patients: Antiviral therapy survival benefit in patients on hemodialysis. J. Hepatol. 2018, 68, 904–911. [Google Scholar] [CrossRef]
- Solomon, S.S.; Wagner-Cardoso, S.; Smeaton, L.; Sowah, L.A.; Wimbish, C.; Robbins, G.; Brates, I.; Scello, C.; Son, A.; Avihingsanon, A.; et al. A minimal monitoring approach for the treatment of hepatitis C virus infection (ACTG A5360 [MINMON]): A phase 4, open-label, single-arm trial. Lancet Gastroenterol. Hepatol. 2022, 7, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Sulkowski, M.S.; Gardiner, D.F.; Rodriguez-Torres, M.; Reddy, K.R.; Hassanein, T.; Jacobson, I.; Lawitz, E.; Lok, A.S.; Hinestrosa, F.; Thuluvath, P.J.; et al. Daclatasvir plus sofosbuvir for previously treated or untreated chronic HCV infection. N. Engl. J. Med. 2014, 370, 211–221. [Google Scholar] [CrossRef]
- Saxena, V.; Koraishy, F.M.; Sise, M.E.; Lim, J.K.; Schmidt, M.; Chung, R.T.; Liapakis, A.; Nelson, D.R.; Fried, M.W.; Terrault, N.A.; et al. Safety and efficacy of sofosbuvir-containing regimens in hepatitis C-infected patients with impaired renal function. Liver Int. 2016, 36, 807–816. [Google Scholar] [CrossRef]
- Tokuchi, Y.; Suda, G.; Kimura, M.; Maehara, O.; Kitagataya, T.; Ohara, M.; Yamada, R.; Shigesawa, T.; Suzuki, K.; Kawagishi, N.; et al. Changes in the estimated renal function after hepatitis C virus eradication with direct-acting antiviral agents: Impact of changes in skeletal muscle mass. J. Viral Hepat. 2021, 28, 755–763. [Google Scholar] [CrossRef]
- Batsaikhan, B.; Huang, C.I.; Yeh, M.L.; Huang, C.F.; Liang, P.C.; Hsieh, M.Y.; Huang, J.F.; Yu, M.L.; Chuang, W.L.; Lee, J.C.; et al. Association between cryoglobulinemia and liver fibrosis in chronic hepatitis C patients. J. Gastroenterol. Hepatol. 2018, 33, 1897–1903. [Google Scholar] [CrossRef]
- Batsaikhan, B.; Huang, C.I.; Yeh, M.L.; Huang, C.F.; Lin, Y.H.; Liang, P.C.; Hsieh, M.Y.; Lin, Y.C.; Huang, J.F.; Chuang, W.L.; et al. Persistent cryoglobulinemia after antiviral treatment is associated with advanced fibrosis in chronic hepatitis C patients. PLoS ONE 2022, 17, e0268180. [Google Scholar] [CrossRef]
- Dashjamts, G.; Ganzorig, A.E.; Tsedendorj, Y.; Dondov, G.; Nergui, O.; Badamjav, T.; Huang, C.F.; Liang, P.C.; Lonjid, T.; Batsaikhan, B.; et al. Post-Treatment Occurrence of Serum Cryoglobulinemia in Chronic Hepatitis C Patients. Diagnostics 2024, 14, 1188. [Google Scholar] [CrossRef]
- McGuire, B.M.; Julian, B.A.; Bynon, J.S., Jr.; Cook, W.J.; King, S.J.; Curtis, J.J.; Accortt, N.A.; Eckhoff, D.E. Brief communication: Glomerulonephritis in patients with hepatitis C cirrhosis undergoing liver transplantation. Ann. Intern. Med. 2006, 144, 735–741. [Google Scholar] [CrossRef]
- Satapathy, S.K.; Lingisetty, C.S.; Williams, S. Higher prevalence of chronic kidney disease and shorter renal survival in patients with chronic hepatitis C virus infection. Hepatol. Int. 2012, 6, 369–378. [Google Scholar] [CrossRef]
- Chen, Y.C.; Hwang, S.J.; Li, C.Y.; Wu, C.P.; Lin, L.C. A Taiwanese Nationwide Cohort Study Shows Interferon-Based Therapy for Chronic Hepatitis C Reduces the Risk of Chronic Kidney Disease. Medicine 2015, 94, e1334. [Google Scholar] [CrossRef]
- Hsu, Y.C.; Ho, H.J.; Huang, Y.T.; Wang, H.H.; Wu, M.S.; Lin, J.T.; Wu, C.Y. Association between antiviral treatment and extrahepatic outcomes in patients with hepatitis C virus infection. Gut 2015, 64, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Ble, M.; Aguilera, V.; Rubin, A.; Garcia-Eliz, M.; Vinaixa, C.; Prieto, M.; Berenguer, M. Improved renal function in liver transplant recipients treated for hepatitis C virus with a sustained virological response and mild chronic kidney disease. Liver Transpl. 2014, 20, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Sise, M.E.; Backman, E.; Ortiz, G.A.; Hundemer, G.L.; Ufere, N.N.; Chute, D.F.; Brancale, J.; Xu, D.; Wisocky, J.; Lin, M.V.; et al. Effect of Sofosbuvir-Based Hepatitis C Virus Therapy on Kidney Function in Patients with CKD. Clin. J. Am. Soc. Nephrol. 2017, 12, 1615–1623. [Google Scholar] [CrossRef] [PubMed]
- Pockros, P.J.; Reddy, K.R.; Mantry, P.S.; Cohen, E.; Bennett, M.; Sulkowski, M.S.; Bernstein, D.E.; Cohen, D.E.; Shulman, N.S.; Wang, D.; et al. Efficacy of Direct-Acting Antiviral Combination for Patients With Hepatitis C Virus Genotype 1 Infection and Severe Renal Impairment or End-Stage Renal Disease. Gastroenterology 2016, 150, 1590–1598. [Google Scholar] [CrossRef]
- Puenpatom, A.; Hull, M.; McPheeters, J.; Schwebke, K. Disease Burden, Early Discontinuation, and Healthcare Costs in Hepatitis C Patients with and without Chronic Kidney Disease Treated with Interferon-Free Direct-Acting Antiviral Regimens. Clin. Drug Investig. 2017, 37, 687–697. [Google Scholar] [CrossRef]
- de Jager, D.J.; Grootendorst, D.C.; Jager, K.J.; van Dijk, P.C.; Tomas, L.M.; Ansell, D.; Collart, F.; Finne, P.; Heaf, J.G.; De Meester, J.; et al. Cardiovascular and noncardiovascular mortality among patients starting dialysis. JAMA 2009, 302, 1782–1789. [Google Scholar] [CrossRef]
- Hsu, Y.C.; Lin, J.T.; Ho, H.J.; Kao, Y.H.; Huang, Y.T.; Hsiao, N.W.; Wu, M.S.; Liu, Y.Y.; Wu, C.Y. Antiviral treatment for hepatitis C virus infection is associated with improved renal and cardiovascular outcomes in diabetic patients. Hepatology 2014, 59, 1293–1302. [Google Scholar] [CrossRef]
- Petta, S.; Maida, M.; Macaluso, F.S.; Barbara, M.; Licata, A.; Craxi, A.; Camma, C. Hepatitis C Virus Infection Is Associated With Increased Cardiovascular Mortality: A Meta-Analysis of Observational Studies. Gastroenterology 2016, 150, 145–155.e4; quiz e115-146. [Google Scholar] [CrossRef]
- Pol, S.; Jadoul, M.; Vallet-Pichard, A. An update on the management of hepatitis C virus-infected patients with stage 4-5 chronic kidney disease while awaiting the revised KDIGO Guidelines. Nephrol. Dial. Transplant. 2017, 32, 32–35. [Google Scholar] [CrossRef]
- Nevola, R.; Rinaldi, L.; Zeni, L.; Sasso, F.C.; Pafundi, P.C.; Guerrera, B.; Marrone, A.; Giordano, M.; Adinolfi, L.E. Metabolic and renal changes in patients with chronic hepatitis C infection after hepatitis C virus clearance by direct-acting antivirals. JGH Open 2020, 4, 713–721. [Google Scholar] [CrossRef]
- Gantumur, G.; Batsaikhan, B.; Huang, C.I.; Yeh, M.L.; Huang, C.F.; Lin, Y.H.; Lin, T.C.; Liang, P.C.; Liu, T.W.; Lee, J.J.; et al. The association between hepatitis C virus infection and renal function. J. Chin. Med. Assoc. 2021, 84, 757–765. [Google Scholar] [CrossRef]
- El Sagheer, G.; Soliman, E.; Ahmad, A.; Hamdy, L. Study of changes in lipid profile and insulin resistance in Egyptian patients with chronic hepatitis C genotype 4 in the era of DAAs. Libyan J. Med. 2018, 13, 1435124. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, J.R.; Velosa, J.; Serejo, F. Lipids, glucose and iron metabolic alterations in chronic hepatitis C after viral eradication—Comparison of the new direct-acting antiviral agents with the old regimens. Scand. J. Gastroenterol. 2018, 53, 857–863. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Goto, T.; Iio, E.; Matsunami, K.; Fujiwara, K.; Shinkai, N.; Matsuura, K.; Matsui, T.; Nojiri, S.; Tanaka, Y. Changes in serum lipid profiles caused by three regimens of interferon-free direct-acting antivirals for patients infected with hepatitis C virus. Hepatol. Res. 2018, 48, E203–E212. [Google Scholar] [CrossRef]
- Hashimoto, S.; Yatsuhashi, H.; Abiru, S.; Yamasaki, K.; Komori, A.; Nagaoka, S.; Saeki, A.; Uchida, S.; Bekki, S.; Kugiyama, Y.; et al. Rapid Increase in Serum Low-Density Lipoprotein Cholesterol Concentration during Hepatitis C Interferon-Free Treatment. PLoS ONE 2016, 11, e0163644. [Google Scholar] [CrossRef]
- Mbaeyi, C.; Thompson, N.D. Hepatitis C virus screening and management of seroconversions in hemodialysis facilities. Semin. Dial. 2013, 26, 439–446. [Google Scholar] [CrossRef]
- Pol, S.; Parlati, L.; Jadoul, M. Hepatitis C virus and the kidney. Nat. Rev. Nephrol. 2019, 15, 73–86. [Google Scholar] [CrossRef]
- Sise, M.E.; Bloom, A.K.; Wisocky, J.; Lin, M.V.; Gustafson, J.L.; Lundquist, A.L.; Steele, D.; Thiim, M.; Williams, W.W.; Hashemi, N.; et al. Treatment of hepatitis C virus-associated mixed cryoglobulinemia with direct-acting antiviral agents. Hepatology 2016, 63, 408–417. [Google Scholar] [CrossRef]
- Coppola, N.; Portunato, F.; Buonomo, A.R.; Staiano, L.; Scotto, R.; Pinchera, B.; De Pascalis, S.; Amoruso, D.C.; Martini, S.; Pisaturo, M.; et al. Interferon-free regimens improve kidney function in patients with chronic hepatitis C infection. J. Nephrol. 2019, 32, 763–773. [Google Scholar] [CrossRef]
Parameters | Baseline Characteristics | After 3 Months Characteristics | p Value |
---|---|---|---|
Age (mean ± SD) | 61.36 ± 12.3 | 61.82 ± 12.3 | 0.001 |
Sex, n (%) | |||
Male | 2395 (46.4) | 1990 (45.3) | 0.162 |
Female | 2766 (53.6) | 2404 (54.7) | |
BMI | 24.8 ± 3.3 | 25.2 ± 3.8 | 0.259 |
Presence of type 2 diabetes mellitus, n (%) | |||
Yes | 97 (1.9) | 14 (0.3) | 0.001 |
No | 3872 (75.0) | 2011 (39.0) | |
Hypertension, n (%) | |||
Yes | 166 (3.2) | 21 (0.4) | 0.001 |
No | 2935 (56.9) | 2003 (38.8) | |
Hyperlipidemia, n (%) | |||
Yes | 258 (5.0) | 32 (0.6) | 0.001 |
No | 4221 (81.8) | 1993 (38.6) | |
Alcohol drinking, n (%) | 655 (12.7) | 458 (8.2) | 0.001 |
Smoking history, n (%) | 1013 (19.6) | 885 (16.5) | 0.001 |
Serum biochemistry | |||
WBC (mean ± SD) | 5.81 ± 1.9 | 6.01 ± 2.0 | 0.001 |
HGB (mean ± SD) | 13.49 ± 1.9 | 13.51 ± 1.9 | 0.336 |
PLT (mean ± SD) | 186.30 ± 72.0 | 192.12 ± 71.8 | 0.001 |
AST (mean ± SD) | 61.62 ± 47.1 | 28.98 ± 16.7 | 0.001 |
ALT (mean ± SD) | 70.72 ± 63.3 | 23.84 ± 20.0 | 0.001 |
BIl (D) (mean ± SD) | 0.20 ± 0.2 | 0.16 ± 0.1 | 0.001 |
AFP (mean ± SD) | 16.58 ± 279.2 | 56.04 ± 2649.7 | 0.279 |
eGFR, mL/min per 1.73 m2 | 83.92 ± 30.1 | 83.62 ± 30.6 | 0.265 |
CHOL (T) (mean ± SD) | 172.77 ± 38.0 | 187.79 ± 40.4 | 0.001 |
TG (mean ± SD) | 101.98 ± 56.7 | 110.91 ± 72.3 | 0.001 |
Fibroscan median | 12.42 ± 10.9 | 9.24 ± 8.1 | 0.001 |
FIB4 | 3.23 ± 3.0 | 2.49 ± 2.1 | 0.001 |
APRI | 1.11 ± 1.3 | 0.48 ± 0.5 | 0.001 |
Cryoglobulinemia, n (%) | 821 (15.9) | 70 (1.4) | 0.001 |
CKD, n (%) | 4823 | 3996 | 0.001 |
I | 2013 (39.0) | 1616 (31.3) | |
II | 2015 (39.1) | 1683 (32.6) | |
III | 517 (10.0) | 455 (8.8) | |
IV | 62 (1.2) | 22 (0.8) | |
IV | 216 (4.2) | 200 (3.9) |
Parameters | Baseline Characteristics | After 3 Months Characteristics | p Value |
---|---|---|---|
Age (mean ± SD) | 69.16 ± 10.4 | 69.63 ± 10.5 | 0.001 |
WBC (mean ± SD) | 6.04 ± 2.0 | 6.27 ± 2.0 | 0.001 |
HGB (mean ± SD) | 12.08 ± 2.0 | 12.17 ± 2.0 | 0.077 |
PLT (mean ± SD) | 178.42 ± 71.3 | 182.56 ± 70.8 | 0.034 |
AST (mean ± SD) | 54.48 ± 50.2 | 26.98 ± 13.2 | 0.001 |
ALT (mean ± SD) | 53.46 ± 52.3 | 20.65 ± 23.8 | 0.001 |
BIl (D) (mean ± SD) | 0.18 ± 0.1 | 0.15 ± 0.1 | 0.001 |
AFP (mean ± SD) | 11.13 ± 71.5 | 24.93 ± 234.6 | 0.082 |
GFR mL/min per 1.73 m2 | 35.93 ± 19.7 | 38.71 ± 23.8 | 0.001 |
CHOL (T) (mean ± SD) | 164.48 ± 37.5 | 181.41 ± 43.6 | 0.001 |
TG (mean ± SD) | 115.13 ± 59.3 | 124.13 ± 70.6 | 0.001 |
Fibroscan median | 13.56 ± 11.2 | 10.44 ± 10.4 | 0.001 |
FIB4 | 3.65 ± 3.4 | 2.92 ± 2.3 | 0.001 |
APRI | 1.00 ± 1.4 | 0.46 ± 0.4 | 0.001 |
Cryoglobulinemia, n (%) | 109 (13.7) | 43 (5.4) | 0.001 |
CKD, n (%) | n = 793 | n = 689 | 0.001 |
I | |||
II | |||
III | 515 (64.9) | 331 (41.7) | |
IV | 62 (7.8) | 41 (5.2) | |
IV | 216 (27.2) | 196 (24.7) |
Univariate Model | Multivariate Model | |||||
---|---|---|---|---|---|---|
Baseline Predictors of eGFR Improvement After DAAs | OR | 95% CI | p Value | OR | 95% CI | p Value |
Age, per 50 yr | 0.90 | 0.77–1.05 | 0.20 | |||
Sex (female vs. male) | 0.87 | 0.77–0.99 | 0.03 | 0.88 | 0.78–0.99 | 0.03 |
Nondiabetic vs. diabetic | 0.83 | 0.71–0.96 | 0.01 | 0.75 | 0.64–0.87 | 0.01 |
Cirrhosis (vs. noncirrhotic) | 0.93 | 0.82–1.06 | 0.29 | |||
Hypertension (vs. non-hypertensive) | 0.95 | 0.84–1.08 | 0.48 | |||
Baseline eGFR < 60 mL/min per 1.73 m2 | 1.62 | 1.37–1.91 | 0.01 | 1.73 | 1.46–2.05 | 0.01 |
Characteristics | OR | 95% CI | p Value |
---|---|---|---|
Age, per 50 yr | 1.12 | 0.93–1.35 | 0.21 |
Sex (female vs. male) | 0.98 | 0.84–1.13 | 0.81 |
Nondiabetic patients vs. diabetic | 0.89 | 0.75–1.06 | 0.20 |
Cirrhosis (vs. noncirrhotic) FIB4_3.25 | 0.85 | 0.73–0.99 | 0.04 |
Non-HTN vs. HTN | 1.12 | 0.96–1.30 | 0.12 |
Baseline eGFR < 60 mL/min per 1.73 m2 | 5.52 | 3.96–7.70 | 0.01 |
Baseline | Post Treatment | Participants | p Value |
---|---|---|---|
Nondiabetic vs. diabetic patients | Nondiabetic vs. diabetic patients | p < 0.001 | |
− | − | 2691 | |
+ | − | 159 | |
− | + | 105 | |
+ | + | 382 | |
Non-cryoglobulinemia vs. cryoglobulinemia patients | Non-cryoglobulinemia vs. cryoglobulinemia patients | p < 0.001 | |
− | − | 252 | |
+ | − | 113 | |
− | + | 11 | |
+ | + | 40 | |
Non-hypertension vs. hypertension patients | Non-hypertension vs. hypertension patients | p < 0.001 | |
− | − | 1137 | |
+ | − | 84 | |
− | + | 16 | |
+ | + | 0 | |
Non-proteinuria vs. proteinuria patients | Non-proteinuria vs. proteinuria patients | p < 0.001 | |
− | − | 144 | |
+ | − | 158 | |
− | + | 39 | |
+ | + | 176 | |
Non-other cancer vs. other cancer patients | Non-other cancer vs. other cancer patients | p < 0.001 | |
− | − | 1868 | |
+ | − | 146 | |
− | + | 10 | |
+ | + | 1 |
Parameters | Total | Baseline eGFR Level, Mean ± SD | Total | After Treatment eGFR Level, Mean ± SD | p Value |
---|---|---|---|---|---|
DM, n | 0.001 | ||||
Yes | 1044 | 73.95 ± 34.9 | 117 | 81.42 ± 29.8 | |
No | 3779 | 86.70 ± 28.7 | 1901 | 82.86 ± 29.07 | |
HDL, n | 0.001 | ||||
Yes | 739 | 76.82 ± 32.4 | 136 | 81.54 ± 30.5 | |
No | 4084 | 85.22 ± 30.1 | 1882 | 82.86 ± 290 | |
HTN, n | 0.001 | ||||
Yes | 1964 | 73.33 ± 31.1 | 126 | 83.14 ± 29.2 | |
No | 2859 | 91.23 ± 27.8 | 1892 | 82.74 ± 29.1 | |
Cryoglobulinemia, n | 0.001 | ||||
Yes | 3183 | 85.08 ± 31.1 | 21 | 47.04 ± 36.2 | |
No | 1640 | 81.72 ± 29.5 | 244 | 53.14 ± 31.5 | |
Proteinuria, n | 0.001 | ||||
Yes | 2197 | 78.25 ± 35.4 | 240 | 39.72 ± 31.3 | |
No | 2626 | 88.70 ± 24.8 | 164 | 65.50 ± 25.9 | |
FIB4 | 0.001 | ||||
<3.25 | 3260 | 85.24 ± 30.8 | 1533 | 84.23 ± 28.6 | |
>3.25 | 1548 | 81.15 ± 29.9 | 448 | 78.53 ± 30.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dashjamts, G.; Ganzorig, A.-E.; Tsedendorj, Y.; Daramjav, D.; Khayankhyarvaa, E.; Ulziitsogt, B.; Nergui, O.; Dondov, G.; Badamjav, T.; Lonjid, T.; et al. Change in Estimated Glomerular Filtration Rate After Direct-Acting Antiviral Treatment in Chronic Hepatitis C Patients. Diseases 2025, 13, 26. https://doi.org/10.3390/diseases13020026
Dashjamts G, Ganzorig A-E, Tsedendorj Y, Daramjav D, Khayankhyarvaa E, Ulziitsogt B, Nergui O, Dondov G, Badamjav T, Lonjid T, et al. Change in Estimated Glomerular Filtration Rate After Direct-Acting Antiviral Treatment in Chronic Hepatitis C Patients. Diseases. 2025; 13(2):26. https://doi.org/10.3390/diseases13020026
Chicago/Turabian StyleDashjamts, Gantogtokh, Amin-Erdene Ganzorig, Yumchinsuren Tsedendorj, Dolgion Daramjav, Enkhmend Khayankhyarvaa, Bolor Ulziitsogt, Otgongerel Nergui, Ganchimeg Dondov, Tegshjargal Badamjav, Tulgaa Lonjid, and et al. 2025. "Change in Estimated Glomerular Filtration Rate After Direct-Acting Antiviral Treatment in Chronic Hepatitis C Patients" Diseases 13, no. 2: 26. https://doi.org/10.3390/diseases13020026
APA StyleDashjamts, G., Ganzorig, A.-E., Tsedendorj, Y., Daramjav, D., Khayankhyarvaa, E., Ulziitsogt, B., Nergui, O., Dondov, G., Badamjav, T., Lonjid, T., Huang, C.-F., Liang, P.-C., Batsaikhan, B., & Dai, C.-Y. (2025). Change in Estimated Glomerular Filtration Rate After Direct-Acting Antiviral Treatment in Chronic Hepatitis C Patients. Diseases, 13(2), 26. https://doi.org/10.3390/diseases13020026