Impact of HPV Types and Dendritic Cells on Recurrent Respiratory Papillomatosis’ Aggressiveness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Construction of the Tissue Microarray (TMA)
2.3. Immunohistochemistry
2.4. Cells Quantification
2.5. Statistical Analysis
3. Results
3.1. Comprehensive Analysis of Quantitative Factors
3.2. Analysis of Qualitative Factors Comparing JRRP and ARRP Groups
3.3. Analysis of Quantitative Factors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization—WHO. Who Classification of Tumours Online: Head and Neck Tumours [Internet]. 5a. International Agency for Research on Cancer, Editor. 2022. Available online: https://tumourclassification.iarc.who.int/welcome/ (accessed on 6 May 2024).
- Sichero, L.; Ferreira, S.; López, R.V.M.; Mello, B.P.; Costa, V.; El-Achkar, V.N.R.; Carlos, R.; Ribeiro-Silva, A.; Pignatari, S.; Kaminagakura, E.; et al. Prevalence of human papillomavirus 6 and 11 variants in recurrent respiratory papillomatosis. J. Med. Virol. 2021, 93, 3835–3840. [Google Scholar] [CrossRef] [PubMed]
- Suter-Montano, T.; Montaño, E.; Martínez, C.; Plascencia, T.; Sepulveda, M.T.; Rodríguez, M. Adult recurrent respirator papillomatosis: A new therapeutic approach with pegylated interferon alpha 2a (Peg-IFNα-2a) and GM-CSF. Otolaryngol. Head. Neck Surg. 2013, 148, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Derkay, C.S.; Bluher, A.E. Update on Recurrent Respiratory Papillomatosis. Otolaryngol. Clin. N. Am. 2019, 52, 669–679. [Google Scholar] [CrossRef] [PubMed]
- Benedict, P.A.; Ruiz, R.; Yoo, M.; Verma, A.; Ahmed, O.H.; Wang, B.; Dion, G.R.; Voigt, A.; Merati, A.; Rosen, C.A.; et al. Laryngeal distribution of recurrent respiratory papillomatosis in a previously untreated cohort. Laryngoscope 2018, 128, 138–143. [Google Scholar] [CrossRef] [PubMed]
- El-Achkar, V.N.R.; Duarte, A.; Saggioro, F.P.; De Mello Filho, F.V.; León, J.E.; Ribeiro-Silva, A.; Kaminagakura, E. Squamous Cell Carcinoma Originating from Adult Laryngeal Papillomatosis: Case Report and Review of the Literature. Case Rep. Otolaryngol. 2018, 2018, 4362162. [Google Scholar]
- Ivancic, R.; Iqbal, H.; Silva, B.; Pan, Q.; Matrka, L. Current and future management of recurrent respiratory papillomatosis. Laryngoscope Investig. Otolaryngol. 2018, 3, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Chieppa, M. Role of Dendritic Cells in Inflammation. Int. J. Mol. Sci. 2020, 21, 4432. [Google Scholar] [CrossRef] [PubMed]
- Bai, K.; Clavijo, P.E.; Robbins, Y.; Norberg, S.M.; Allen, C.T. Quantification and Functional Studies of Neutrophilic Cells Identifies Distinct Papilloma Phenotypes. Laryngoscope 2024, 134, 3238–3244. [Google Scholar] [CrossRef] [PubMed]
- El-Achkar, V.N.R.; Duarte, A.; Carlos, R.; León, J.E.; Ribeiro-Silva, A.; Pignatari, S.S.N.; Kaminagakura, E. Relationship between inflammation and the severity of Recurrent Respiratory Papillomatosis. Am. J. Otolaryngol. 2020, 41, 102321. [Google Scholar] [CrossRef]
- Balan, S.; Saxena, M.; Bhardwaj, N. Dendritic cell subsets and locations. Int. Rev. Cell Mol. Biol. 2019, 348, 1–68. [Google Scholar]
- Meghil, M.M.; Cutler, C.W. Oral Microbes and Mucosal Dendritic Cells, “Spark and Flame” of Local and Distant Inflammatory Diseases. Int. J. Mol. Sci. 2020, 21, 1643. [Google Scholar] [CrossRef]
- Banchereau, J.; Steinman, R.M. Dendritic cells and the control of immunity. Nature 1998, 392, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Gondak, R.; Mauad, T.; Schultz, L.; Soares, F.; Kowalski, L.P.; Vargas, P.A. Decreased CD1a(+), CD83(+) and factor XIIIa(+) dendritic cells in cervical lymph nodes and palatine tonsils of AIDS patients. Histopathology 2014, 64, 234–241. [Google Scholar] [CrossRef] [PubMed]
- DeVoti, J.; Hatam, L.; Lucs, A.; Afzal, A.; Abramson, A.; Steinberg, B.; Bonagura, V. Decreased Langerhans cell responses to IL-36γ: Altered innate immunity in patients with recurrent respiratory papillomatosis. Mol. Med. 2014, 20, 372–380. [Google Scholar] [CrossRef]
- Kovalenko, S.; Lukashenko, P.; Romanovskaya, A.; Soldatski, I.L.; Bakanov, S.I.; Pfister, H.; Gerein, V. Distribution and density of CD1a+ and CD83+ dendritic cells in HPV-associated laryngeal papillomas. Int. J. Pediatr. Otorhinolaryngol. 2009, 73, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Salama, I.; Malone, P.S.; Mihaimeed, F.; Jones, J.L. A review of the S100 proteins in cancer. Eur. J. Surg. Oncol. 2008, 34, 357–364. [Google Scholar] [CrossRef]
- DeVoti, J.A.; Rosenthal, D.W.; Wu, R.; Abramson, A.L.; Steinberg, B.M.; Bonagura, V.R. Immune dysregulation and tumor-associated gene changes in recurrent respiratory papillomatosis: A paired microarray analysis. Mol. Med. 2008, 14, 608–617. [Google Scholar] [CrossRef] [PubMed]
- Ivancic, R.; Iqbal, H.; Silva, B.; Pan, Q.; Matrka, L. Immunological tolerance of low-risk HPV in recurrent respiratory papillomatosis. Clin. Exp. Immunol. 2020, 199, 131–142. [Google Scholar] [CrossRef]
- Cury, P.R.; Furuse, C.; Rodrigues, A.E.; Barbuto, J.A.; Araújo, V.C.; Araújo, N.S. Interstitial and Langerhans’ dendritic cells in chronic periodontitis and gingivitis. Braz. Oral. Res. 2008, 22, 258–263. [Google Scholar] [CrossRef] [PubMed]
- El-Achkar, V.N.R.; Duarte, A.; Carlos, R.; León, J.E.; Ribeiro-Silva, A.; Pignatari, S.S.N.; Kaminagakura, E. Histopathological features of juvenile-onset laryngeal papillomatosis related to severity. Head. Neck 2019, 41, 1412–1417. [Google Scholar] [CrossRef] [PubMed]
- Derkay, C.S.; Malis, D.J.; Zalzal, G.; Wiatrak, B.J.; Kashima, H.K.; Coltrera, M.D. A staging system for assessing severity of disease and response to therapy in recurrent respiratory papillomatosis. Laryngoscope 1998, 108, 935–937. [Google Scholar] [CrossRef] [PubMed]
- Hester, R.P.; Derkay, C.S.; Burke, B.L.; Lawson, M.L. Reliability of a staging assessment system for recurrent respiratory papillomatosis. Int. J. Pediatr. Otorhinolaryngol. 2003, 67, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Vorobjova, T.; Ress, K.; Luts, K.; Uibo, O.; Uibo, R. The impact of langerin (CD207)+ dendritic cells and FOXP3+ Treg cells in the small bowel mucosa of children with celiac disease and atopic dermatitis in comparison to children with functional gastrointestinal disorders. Apmis 2016, 124, 689–696. [Google Scholar] [CrossRef]
- Bonagura, V.R.; Hatam, L.J.; Rosenthal, D.W.; De Voti, J.A.; Lam, F.; Steinberg, B.M.; Abramson, A.L. Recurrent respiratory papillomatosis: A complex defect in immune responsiveness to human papillomavirus-6 and -11. Apmis 2010, 118, 455–470. [Google Scholar] [CrossRef] [PubMed]
- Larson, D.A.; Derkay, C.S. Epidemiology of recurrent respiratory papillomatosis. Apmis 2010, 118, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Bai, K.; Allen, C. How Enhancing Immunity to Low-Risk HPV Could Cure Recurrent Respiratory Papillomatosis. Laryngoscope 2021, 131, 2041–2047. [Google Scholar] [CrossRef] [PubMed]
- Makiyama, K.; Hirai, R.; Matsuzaki, H.; Ikeda, M. Assessment of human papilloma virus infection in adult laryngeal papilloma using a screening test. J. Voice 2013, 27, 230–235. [Google Scholar] [CrossRef]
- Aaltonen, L.M.; Rihkanen, H.; Vaheri, A. Human papillomavirus in larynx. Laryngoscope 2002, 112, 700–707. [Google Scholar] [CrossRef]
- Vancurova, I.; Wu, R.; Miskolci, V.; Sun, S. Increased p50/p50 NF-kappaB activation in human papillomavirus type 6- or type 11-induced laryngeal papilloma tissue. J. Virol. 2002, 76, 1533–1536. [Google Scholar] [CrossRef]
- Sanchez, G.I.; Jaramillo, R.; Cuello, G.; Quintero, K.; Baena, A.; O’Byrne, A.; Reyes, A.J.; Santamaria, C.; Cuello, H.; Arrunategui, A.; et al. Human papillomavirus genotype detection in recurrent respiratory papillomatosis (RRP) in Colombia. Head. Neck 2013, 35, 229–234. [Google Scholar] [CrossRef]
- Intakorn, P.; Sonsuwan, N. Human papillomatosis genotyping and severity in patients with recurrent respiratory papillomatosis. J. Med. Assoc. Thai. 2014, 97, S136–S141. [Google Scholar]
- Fortes, H.R.; Von Ranke, F.M.; Escuissato, D.L.; Araujo Neto, C.A.; Zanetti, G.; Hochhegger, B.; Souza, C.A.; Marchiori, E. Recurrent respiratory papillomatosis: A state-of-the-art review. Respir. Med. 2017, 126, 116–121. [Google Scholar] [CrossRef]
- Wang, W.; Xi, Y.; Li, S.; Liu, X.; Wang, G.; Wang, H.; Pei, M.; Zhang, J.; Gui, J.; Ni, X. Restricted Recruitment of NK Cells with Impaired Function Is Caused by HPV-Driven Immunosuppressive Microenvironment of Papillomas in Aggressive Juvenile-Onset Recurrent Respiratory Papillomatosis Patients. J. Virol. 2022, 96, e0094622. [Google Scholar] [CrossRef] [PubMed]
- Chantre-Justino, M.; Figueiredo, M.C.; Alves, G.; Ornellas, M.H.F. Prevalence of Epstein-Barr virus infection in recurrent respiratory papillomatosis and the influence on disease severity. Diagn. Microbiol. Infect. Dis. 2022, 103, 115655. [Google Scholar] [CrossRef]
- Becker, Y. Immunological and regulatory functions of uninfected and virus infected immature and mature subtypes of dendritic cells--a review. Virus Genes. 2003, 26, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Filho, G.B. Bogliolo—Patologia Geral, 6th ed.; Guanabara Koogan: Rio de Janeiro, Brazil, 2019; 328p. [Google Scholar]
- Manickam, A.; Sivanandham, M.; Tourkova, I.L. Immunological role of dendritic cells in cervical cancer. Adv. Exp. Med. Biol. 2007, 601, 155–162. [Google Scholar] [PubMed]
- Xu, Y.; Zhu, K.J.; Chen, X.Z.; Zhao, K.J.; Lu, Z.M.; Cheng, H. Mapping of cytotoxic T lymphocytes epitopes in E7 antigen of human papillomavirus type 11. Arch. Dermatol. Res. 2008, 300, 235–242. [Google Scholar] [CrossRef]
- Johnson, K.E.; Redd, A.D.; Quinn, T.C.; Collinson-Streng, A.N.; Cornish, T.; Kong, X.; Sharma, R.; Tobian, A.A.; Tsai, B.; Sherman, M.E.; et al. Effects of HIV-1 and herpes simplex virus type 2 infection on lymphocyte and dendritic cell density in adult foreskins from Rakai, Uganda. J. Infect. Dis. 2011, 203, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Foell, D.; Wittkowski, H.; Vogl, T.; Roth, J. S100 proteins expressed in phagocytes: A novel group of damage-associated molecular pattern molecules. J. Leukoc. Biol. 2007, 81, 28–37. [Google Scholar] [CrossRef]
- Singh, P.; Ali, S.A. Multifunctional Role of S100 Protein Family in the Immune System: An Update. Cells 2022, 11, 2274. [Google Scholar] [CrossRef] [PubMed]
- Ferluga, D.; Luzar, B.; Vodovnik, A.; Poljak, M.; Cör, A.; Gale, N.; Kambic, V. Langerhans cells in human papillomaviruses types 6/11 associated laryngeal papillomas. Acta Otolaryngol. Suppl. 1997, 527, 87–91. [Google Scholar] [CrossRef]
- Truxova, I.; Kasikova, L.; Hensler, M.; Skapa, P.; Laco, J.; Pecen, L.; Belicova, L.; Praznovec, I.; Halaska, M.J.; Brtnicky, T.; et al. Mature dendritic cells correlate with favorable immune infiltrate and improved prognosis in ovarian carcinoma patients. J. Immunother. Cancer 2018, 6, 139. [Google Scholar] [CrossRef] [PubMed]
- Böttcher, J.P.; Bonavita, E.; Chakravarty, P.; Blees, H.; Cabeza-Cabrerizo, M.; Sammicheli, S.; Rogers, N.C.; Sahai, E.; Zelenay, S.; Reis e Sousa, C. NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control. Cell 2018, 172, 1022–1037.e14. [Google Scholar] [CrossRef] [PubMed]
- Daud, A.I.; Mirza, N.; Lenox, B.; Andrews, S.; Urbas, P.; Gao, G.X.; Lee, J.H.; Sondak, V.K.; Riker, A.I.; Deconti, R.C.; et al. Phenotypic and functional analysis of dendritic cells and clinical outcome in patients with high-risk melanoma treated with adjuvant granulocyte macrophage colony-stimulating factor. J. Clin. Oncol. 2008, 26, 3235–3241. [Google Scholar] [CrossRef] [PubMed]
n | % | p | ||
---|---|---|---|---|
Group | ARRP | 43 | 54.4 | 0.265 |
JRRP | 36 | 45.6 | ||
Derkay | High | 6 | 7.6 | <0.001 |
Low | 73 | 92.4 | ||
Sex | Female | 27 | 34.2 | <0.001 |
Male | 52 | 65.8 | ||
Recurrence | No | 36 | 47.4 | 0.516 |
Yes | 40 | 52.6 | ||
Tracheostomy | No | 67 | 90.5 | <0.001 |
Yes | 7 | 9.5 | ||
Death | No | 76 | 96.2 | <0.001 |
Yes | 3 | 3.8 | ||
Location | 1 | 51 | 64.4 | <0.001 |
≥2 | 28 | 35.4 | ||
Atypia | Absent | 5 | 6.3 | <0.001 |
Present | 74 | 93.7 | ||
HPV 6 | Absent | 26 | 32.9 | <0.001 |
Present | 53 | 67.1 | ||
HPV 11 | Absent | 49 | 62.0 | 0.003 |
Present | 30 | 38.0 |
JRRP | ARRP | p | ||||
---|---|---|---|---|---|---|
n | % | n | % | |||
Sex | Female | 18 | 50.0 | 9 | 20.9 | 0.007 |
Male | 18 | 50.0 | 34 | 79.1 | ||
Atypia | Absent | 0 | 0.0 | 5 | 11.6 | 0.035 |
Present | 36 | 100 | 38 | 88.4 | ||
Derkay | High | 5 | 13.9 | 1 | 2.3 | 0.053 |
Low | 31 | 86.1 | 42 | 97.7 | ||
HPV 11 | Absent | 17 | 47.2 | 32 | 74.4 | 0.013 |
Present | 19 | 52.8 | 11 | 25.6 | ||
HPV 6 | Absent | 17 | 47.2 | 9 | 20.9 | 0.013 |
Present | 19 | 52.8 | 34 | 79.1 | ||
Death | No | 35 | 97.2 | 41 | 95.3 | 0.664 |
Yes | 1 | 2.8 | 2 | 4.7 | ||
Recurrence | No | 14 | 42.4 | 22 | 51.2 | 0.450 |
Yes | 19 | 57.6 | 21 | 48.8 | ||
Tracheostomy | No | 27 | 81.8 | 40 | 97.6 | 0.021 |
Yes | 6 | 18.2 | 1 | 2.4 | ||
Number of RRP | 1 | 23 | 63.9 | 28 | 65.1 | 0.535 |
≥2 | 13 | 36.1 | 15 | 34.9 |
Group | Mean | Median | SD * | p # | |
---|---|---|---|---|---|
CD1a E | JRRP | 1.26 | 1 | 0.78 | 0.367 |
ARRP | 1.39 | 1 | 0.77 | ||
CD1a C | JRRP | 0.42 | 0 | 0.56 | 0.724 |
ARRP | 0.46 | 0 | 0.55 | ||
Factor XIIIa E | JRRP | 0.70 | 1 | 0.64 | 0.018 |
ARRP | 0.36 | 0 | 0.48 | ||
Factor XIIIa C | JRRP | 7.20 | 4 | 8.31 | 0.823 |
ARRP | 6.30 | 5 | 4.75 | ||
S100 E | JRRP | 0.94 | 1 | 0.68 | <0.001 |
ARRP | 2.93 | 2 | 2.39 | ||
S100 C | JRRP | 0.43 | 0 | 0.56 | 0.027 |
ARRP | 0.98 | 1 | 1.18 | ||
CD83 E | JRRP | 1.29 | 1 | 1.01 | 0.025 |
ARRP | 0.84 | 1 | 0.90 | ||
CD83 C | JRRP | 2.03 | 2 | 2.28 | 0.092 |
ARRP | 2.80 | 2 | 2.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, E.E.; de Almeida Lança, M.L.; de Souza, Y.A.; El-Achkar, V.N.; Costa, V.; Carlos, R.; Ribeiro-Silva, A.; Sichero, L.; Villa, L.L.; León, J.E.; et al. Impact of HPV Types and Dendritic Cells on Recurrent Respiratory Papillomatosis’ Aggressiveness. Diseases 2025, 13, 43. https://doi.org/10.3390/diseases13020043
Fernandes EE, de Almeida Lança ML, de Souza YA, El-Achkar VN, Costa V, Carlos R, Ribeiro-Silva A, Sichero L, Villa LL, León JE, et al. Impact of HPV Types and Dendritic Cells on Recurrent Respiratory Papillomatosis’ Aggressiveness. Diseases. 2025; 13(2):43. https://doi.org/10.3390/diseases13020043
Chicago/Turabian StyleFernandes, Ellen Eduarda, Maria Leticia de Almeida Lança, Yan Aparecido de Souza, Vivian Narana El-Achkar, Victor Costa, Román Carlos, Alfredo Ribeiro-Silva, Laura Sichero, Luisa Lina Villa, Jorge Esquiche León, and et al. 2025. "Impact of HPV Types and Dendritic Cells on Recurrent Respiratory Papillomatosis’ Aggressiveness" Diseases 13, no. 2: 43. https://doi.org/10.3390/diseases13020043
APA StyleFernandes, E. E., de Almeida Lança, M. L., de Souza, Y. A., El-Achkar, V. N., Costa, V., Carlos, R., Ribeiro-Silva, A., Sichero, L., Villa, L. L., León, J. E., & Kaminagakura, E. (2025). Impact of HPV Types and Dendritic Cells on Recurrent Respiratory Papillomatosis’ Aggressiveness. Diseases, 13(2), 43. https://doi.org/10.3390/diseases13020043