Epigenetic Factors of Disease
Abstract
:1. Introduction
2. Discussion and Conclusions
Conflicts of Interest
References
- Cavalli, G. Chromatin and epigenetics in development: blending cellular memory with cell fate plasticity. Development 2006, 133, 2089–2094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenuwein, T.; Allis, C.D. Translating the histone code. Science 2001, 293, 1074–1080. [Google Scholar] [CrossRef] [PubMed]
- Jenuwein, T. The epigenetic magic of histone lysine methylation. FEBS 2006. [Google Scholar] [CrossRef] [PubMed]
- Goyal, D.; Limesand, S.W.; Goyal, R. Epigenetic responses and the developmental origins of health and disease. J. Endocrinol. 2019, 242, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Esposito, M.; Sherr, G.L. Epigenetic modifications in Alzheimer’s neuropathology and therapeutics. Front Neurosci. 2019, 10, 476. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.; Flodman, P.L. Expanded insights into mechanisms of gene expression and disease related disruptions. Front Mol. Biosci. 2018, 5, 101. [Google Scholar] [CrossRef] [PubMed]
- Al-Hasani, K.; Mathiyalagan, P.; El-Osta, A. Epigenetics, cardiovascular disease, and cellular reprogramming. J. Mol. Cell Cardiol. 2019, 128, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Ducasse, M.; Brown, M.A. Epigenetic aberrations and cancer. Mol. Cancer 2006, 5, 60. [Google Scholar] [CrossRef]
- Wade, P.A. CpG binding proteins: Coupling chromatin architecture to gene regulation. Oncogene 2001, 20, 3166–3173. [Google Scholar] [CrossRef]
- Villagra, A.; Gutierrez, J.; Paredes, R.; Sierra, J.; Puchi, M.; Imschenetzky, M.; van Wijnen, A.; Lian, J.; Stein, G.; Stein, J.; et al. Reduced CpG methylation is associated with transcriptional activation of the bone-specific rat osteocalcin gene in osteoblasts. J. Cell Biochem. 2002, 85, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Khorasanizadeh, S. The nucleosome: from genomic organization to genomic regulation. Cell 2004, 116, 259–272. [Google Scholar] [CrossRef]
- Strahl, B.D.; Allis, C.D. The language of covalent histone modifications. Nature 2000, 403, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.N.; Adkins, N.L.; Georgel, P. Chromatin remodeling complexes: ATP-dependent machines in action. Biochem. Cell Biol. 2005, 83, 405–417. [Google Scholar] [CrossRef] [PubMed]
- Becker, P.B.; Hörz, W. ATP-dependent nucleosome remodeling. Annu. Rev. Biochem. 2002, 71, 247–273. [Google Scholar] [CrossRef] [PubMed]
- Morris, K.V.; Chan, S.W.; Jacobsen, S.E.; Looney, D.J. Small interfering RNA-induced transcriptional gene silencing in human cells. Science 2004, 305, 1289–1292. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, H.; Taira, K. Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature 2004, 431, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, E.; Allis, C.D. RNA meets chromatin. Genes Dev. 2005, 19, 1635–1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavi, H.H.; Fernandez, H.R.; Xie, W.; Birchler, J.A. RNA silencing in Drosophila. FEBS Lett. 2005, 579, 5940–5949. [Google Scholar] [CrossRef] [PubMed]
- Santos-Reboucas, C.B.; Pimentel, M.M. Implication of abnormal epigenetic patterns for human diseases. Eur. J. Hum. Genet. 2006. [Google Scholar] [CrossRef] [PubMed]
Pathway | Mechanism of Action | Examples of Impacted Conditions |
---|---|---|
DNA Methylation | DNA–protein interactions | embryonic development; epigenetic inheritance; genomic stability; allele-specific expression; inactivation of the X chromosome; |
Histone Modifications | post-translational modifications of histone tails | gene expression; cell cycle regulation; DNA replication; DNA repair; chromatin structure |
ATP-Dependent Chromatin Modifications | chromatin remodeling complexes containing an ATPase domain | cell differentiation; gene expression; cell cycle regulation; DNA replication; DNA repair; chromatin structure |
Non-Coding RNA | RNA-targeting of CpG islands; small interfering RNAs | gene expression |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshiraihi, I.; Brown, M.A. Epigenetic Factors of Disease. Diseases 2019, 7, 42. https://doi.org/10.3390/diseases7020042
Alshiraihi I, Brown MA. Epigenetic Factors of Disease. Diseases. 2019; 7(2):42. https://doi.org/10.3390/diseases7020042
Chicago/Turabian StyleAlshiraihi, Ilham, and Mark A. Brown. 2019. "Epigenetic Factors of Disease" Diseases 7, no. 2: 42. https://doi.org/10.3390/diseases7020042
APA StyleAlshiraihi, I., & Brown, M. A. (2019). Epigenetic Factors of Disease. Diseases, 7(2), 42. https://doi.org/10.3390/diseases7020042