Measuring the Efficiency of U.S. Pharmaceutical Companies Based on Open Innovation Types
Abstract
:1. Introduction
2. Literature Review
2.1. Challenges of the Pharmaceutical Industry and Open Innovation as Breakthrough
- (1)
- ‘Outside-in’ type represent the opening to various external inputs and contributions. Companies could enrich their knowledge base through the integration of external inputs.
- (2)
- ‘Inside-out’ type benefits from selling the internal intellectual property to the outside. Bringing ideas to market, selling the intellectual property (IP), and multiplying technology by transferring ideas to the outside could be the examples of inside-out type’s activities.
- (3)
- ‘Coupled’ type alliances with complementary partners. In the pharmaceutical industry, research, development, clinical, licensing, manufacturing, marketing, and distribution are specialized so that each phase of drug R&D and commercialization can be entrusted to partners.
2.2. Efficiency
2.3. Research Design
3. Methods
3.1. Stochastic Frontier Analysis
3.2. Meta-Frontier Analysis
4. Data and Variables
4.1. Data
4.2. Variables
5. Results
6. Discussion
6.1. Implications
6.2. Limitations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Grabowski, H.; Vernon, J. The Determinants of Pharmaceutical Research and Development Expenditures. J. Evol. Econ. 2000, 10, 201–215. [Google Scholar] [CrossRef]
- Morgan, S.; Grootendorst, P.; Lexchin, J.; Cunningham, C.; Greyson, D. The Cost of Drug Development: A Systematic Review. Health Policy 2011, 100, 4–17. [Google Scholar] [CrossRef] [PubMed]
- Joseph, A.D.; Henry, G.G.; Ronald, W.H. Innovation in the Pharmaceutical Industry: New Estimates of R&D Costs. J. Health Econ. 2016, 47, 20–33. [Google Scholar] [CrossRef]
- Schuhmacher, A.; Germann, P.-G.; Trill, H.; Gassmann, O. Models for Open Innovation in the Pharmaceutical Industry. Drug Discov. Today 2013, 18, 1133–1137. [Google Scholar] [CrossRef] [PubMed]
- Rafols, I.; Hopkins, M.M.; Hoekman, J.; Siepel, J.; O’Hare, A.; Perianes-Rodríguez, A.; Nightingale, P. Big Pharma, Little Science? A Bibliometric Perspective on Big Pharma’s R&D Decline. Technol. Forecast. Soc. Chang. 2014, 81, 22–38. [Google Scholar] [CrossRef]
- Munos, B. Lessons from 60 Years of Pharmaceutical Innovation. Nat. Rev. Drug Discov. 2009, 8, 959–968. [Google Scholar] [CrossRef] [PubMed]
- Carter, P.H.; Berndt, E.R.; DiMasi, J.A.; Trusheim, M. Investigating Investment in Biopharmaceutical R&D. Nat. Rev. Drug Discov. 2016, 15, 673–674. [Google Scholar] [CrossRef] [PubMed]
- Settanni, E.; Harrington, T.S.; Srai, J.S. Pharmaceutical Supply Chain Models: A Synthesis from a Systems View of Operations Research. Oper. Res. Perspect. 2017, 4, 74–95. [Google Scholar] [CrossRef]
- Moors, E.H.M.; Cohen, A.F.; Schellekens, H. Towards a Sustainable System of Drug Development. Drug Discov. Today 2014, 19, 1711–1720. [Google Scholar] [CrossRef] [PubMed]
- Gautam, A.; Pan, X. The Changing Model of Big Pharma: Impact of Key Trends. Drug Discov. Today 2016, 21, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Segers, J.P. Towards a Typology of Business Models in the Biotechnology Industry. Ph.D. Thesis, University of Liège, Liège, Belgium, November 2017. [Google Scholar] [CrossRef]
- Schuhmacher, A.; Gassmann, O.; Hinder, M. Changing R&D Models in Research-Based Pharmaceutical Companies. J. Transl. Med. 2016, 14, 105. [Google Scholar] [CrossRef] [PubMed]
- Bogers, M.; West, J. Innovation Creation and Commercialization beyond the Firm: A Multi-Level Framework. In Proceedings of the DRUID Society Conference 2014, Copenhagen, Denmark, 16–18 June 2014; pp. 1–31. [Google Scholar]
- Grabowski, H. The Link between Gross Profitability and Pharmaceutical R&D Spending. Pharm. Res. 2001, 20, 216–220. [Google Scholar] [CrossRef]
- Schoar, A. Effects of Corporate Diversification on Productivity. J. Financ. 2002, 57, 2379–2403. [Google Scholar] [CrossRef] [Green Version]
- Wang, E.C.; Huang, W. Relative Efficiency of R&D Activities: A Cross-Country Study Accounting for Environmental Factors in the DEA Approach. Res. Policy 2007, 36, 260–273. [Google Scholar] [CrossRef]
- Jena, A.B.; Philipson, T.J. Cost-Effectiveness Analysis and Innovation. J. Health Econ. 2008, 27, 1224–1236. [Google Scholar] [CrossRef] [PubMed]
- Khanna, I. Drug Discovery in Pharmaceutical Industry: Productivity Challenges and Trends. Drug Discov. Today 2012, 17, 1088–1102. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y. Low R&D efficiency in large pharmaceutical companies. Am. J. Med. Res. 2016, 3, 141–151. [Google Scholar]
- Ringel, M.S.; Choy, M.K. Do Large Mergers Increase or Decrease the Productivity of Pharmaceutical R&D? Drug Discov. Today 2017, 22, 1749–1753. [Google Scholar] [CrossRef] [PubMed]
- Kruse, S.; Slomiany, M.; Bitar, R.; Jeffers, S.; Hassan, M. Pharmaceutical R&D Productivity: The Role of Alliances. J. Commer. Biotechnol. 2014, 20, 11–20. [Google Scholar] [CrossRef]
- Carroll, G.P.; Srivastava, S.; Volini, A.S.; Piñeiro-Núñez, M.M.; Vetman, T. Measuring the Effectiveness and Impact of an Open Innovation Platform. Drug Discov. Today 2017, 22, 776–785. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, E. An Integrated DEA & Rundamental Analysis of Pharaceutical Industry a Case Study of Selected Indian Companies. Indian J. Fundam. Appl. Life Sci. 2016, 6, 326–333. [Google Scholar]
- Gascón, F.; Lozano, J.; Ponte, B.; de la Fuente, D. Measuring the Efficiency of Large Pharmaceutical Companies: An Industry Analysis. Eur. J. Health Econ. 2017, 18, 587–608. [Google Scholar] [CrossRef] [PubMed]
- Ku, M.S. Recent Trends in Specialty Pharma Business Model. J. Food Drug Anal. 2015, 23, 595–608. [Google Scholar] [CrossRef] [PubMed]
- Denoon, A.; Vollebregt, E. Can Regenerative Medicine Save Big Pharma’s Business Model from the Patent Cliff? Regen. Med. 2010, 5, 687–690. [Google Scholar] [CrossRef] [PubMed]
- Aitken, M. Medicines Use and Spending in the U.S. A Review of 2016 and Outlook to 2021. Available online: https://www.iqvia.com/institute/reports/medicines-use-and-spending-in-the-us-a-review-of-2016 (accessed on 4 May 2017).
- Chesbrough, H.W. The Era of Open Innovation. MIT Sloan Manag. Rev. 2004, 45, 26–32. [Google Scholar]
- Chesbrough, H. The Future of Open Innovation: IRI Medal AddressThe Future of Open Innovation Will Be More Extensive, More Collaborative, and More Engaged with a Wider Variety of Participants. Res. Technol. Manag. 2017, 60, 29–35. [Google Scholar] [CrossRef]
- Enkel, E.; Gassmann, O.; Chesbrough, H. Open R&D and Open Innovation: Exploring the Phenomenon. R&D Manag. 2009, 39, 311–316. [Google Scholar] [CrossRef]
- Veugelers, R.; Cassiman, B.; van de Vrande, V.; Vanhaverbeke, W.; Duysters, G.; Saebi, T.; Foss, N.J.; Fujiwara, T.; Lee, J.; Min, J.; et al. Open Innovation: The Role of Collective Research Centres in Stimulating. R&D Manag. 2009, 39, 1–49. [Google Scholar]
- West, J.; Bogers, M. Open Innovation: Current Status and Research Opportunities. Innovation 2017, 19, 43–50. [Google Scholar] [CrossRef]
- West, J.; Salter, A.; Vanhaverbeke, W.; Chesbrough, H. Open Innovation: The next Decade. Res. Policy 2014, 43, 805–811. [Google Scholar] [CrossRef]
- Gassmann, O.; Enkel, E. Towards a Theory of Open Innovation: Three Core Process Archetypes. R&D Manag. Conf. (RADMA) 2014, 1–18. Available online: https://www.alexandria.unisg.ch/274/ (accessed on 6 July 2004).
- Rangamiztousi, A.; Ismail, K. A Conceptual Framework for the Effect of Open Innovation Practices on Innovation Performance. J. Basic Appl. Sci. Res. 2015, 5, 16–29. [Google Scholar]
- Torres, L.T.R.; Ibarra, E.R.B.; Arenas, A.P.L. Open Innovation Practices: A Literature Review of Case Studies. J. Adv. Manag. Sci. 2015, 3, 362–367. [Google Scholar] [CrossRef]
- Koopmans, T. An Analysis of Production as an Efficient Combination of Activities; Wiley: Hoboken, NJ, USA, 1951; pp. 33–97. [Google Scholar]
- Debreu, G. The Coefficient of Resource Utilization. Econometrica 1951, 19, 273–292. [Google Scholar] [CrossRef]
- Farrell, M.J. The Measurement of Productive Efficiency. J. R. Stat. Soc. 1957, 120, 253–290. [Google Scholar] [CrossRef]
- Aigner, D.; Lovell, C.A.K.; Schmidt, P. Formulation and Estimation of Stochastic Frontier Production Function Models. J. Econom. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Meeusen, W.; van den Broeck, J. Technical Efficiency and Dimension of the Firm: Some Results on the Use of Frontier Production Functions. Empir. Econ. 1977, 2, 109–122. [Google Scholar] [CrossRef]
- Jondrow, J.; Knox Lovell, C.A.; Materov, I.S.; Schmidt, P. On the Estimation of Technical Inefficiency in the Stochastic Frontier Production Function Model. J. Econom. 1982, 19, 233–238. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the Efficiency of Decision Making Units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Battese, G.E.; Rao, D.S.P. Technology Gap, Efficiency, and a Stochastic Metafrontier Function. Int. J. Bus. Econ. 2002, 1, 87–93. [Google Scholar]
- Addai-asante, J.; Sekyi, S. Stochastic Frontier Analysis of Production Technology: An Application to the Pharmaceutical Manufacturing Firms in Ghana. World J. Curr. Econ. Res. 2016, 2, 1–20. [Google Scholar]
- Chen, C.-M.; Sheng, T.-C.; Yang, Y.-L. Cost Efficiency Analysis of Taiwan Biotech and Pharmaceutical Industry: The Application of Stochastic Meta Frontier Model. Int. J. Econ. Financ. 2014, 6, 131. [Google Scholar] [CrossRef]
- Huang, C.J.; Huang, T.-H.; Liu, N.-H. A New Approach to Estimating the Metafrontier Production Function Based on a Stochastic Frontier Framework. J. Product. Anal. 2014, 42, 241–254. [Google Scholar] [CrossRef]
- Rajeev, M.; Mainak, M. A Comparative Analysis of Efficiency and Productivity of the Indian Pharmaceutical Firms: A Malmquist-Meta-Frontier Approach; Institute for Social and Economic Change: Bangalore, India, 2009; Volume 223. [Google Scholar]
- Lee, C.; Lee, D.; Hwang, J. Platform Openness and the Productivity of Content Providers: A Meta-Frontier Analysis. Telecomm. Policy 2015, 39, 553–562. [Google Scholar] [CrossRef]
- Na, H.S.; Hwang, J.; Hong, J.Y.J.; Lee, D. Efficiency Comparison of Digital Content Providers with Different Pricing Strategies. Telemat. Inform. 2017, 34, 657–663. [Google Scholar] [CrossRef]
- Shin, J.; Ahn, J.; Lee, D. The Impact of Diversification with and without Commodity Bundling on Corporate Performance: An Empirical Analysis in Korea Telecommunication Markets. Technol. Forecast. Soc. Chang. 2015, 101, 314–319. [Google Scholar] [CrossRef]
- Battese, G.E.; Coelli, T. A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function. Empir. Econ. 1995, 20, 325–332. [Google Scholar] [CrossRef]
- Battese, G.E. Frontier Production Functions and Technical Efficiency: A Survey of Empirical Applications in Agricultural Economics. Agric. Econ. 1992, 7, 185–208. [Google Scholar] [CrossRef]
- Battese, G.E.; Prasada Rao, D.S.; O’Donnell, C.J. A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating under Different Technologies. J. Prod. Anal. 2004, 21, 91–103. [Google Scholar] [CrossRef]
- De Vrueh, R.L.A.; Crommelin, D.J.A. Reflections on the Future of Pharmaceutical Public-Private Partnerships: From Input to Impact. Pharm. Res. 2017, 34, 1985–1999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Plump, A.; Ringel, M. Racing to Define Pharmaceutical R&D External Innovation Models. Drug Discov. Today 2015, 20, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Juliano, R.L. Pharmaceutical Innovation and Public Policy: The Case for a New Strategy for Drug Discovery and Development. Sci. Public Policy 2013, 40, 393–405. [Google Scholar] [CrossRef]
- Dierks, R.M.L.; Bruyère, O.; Reginster, J.Y. Critical Analysis of Valuation and Strategical Orientation of Merger and Acquisition Deals in the Pharmaceutical Industry. Expert Rev. Pharmacoecon. Outcomes Res. 2018, 18, 147–160. [Google Scholar] [CrossRef] [PubMed]
- Malik, N.N. Biotech Acquisitions by Big Pharma: Why and What Is Next. Drug Discov. Today 2009, 14, 818–821. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Shin, K. R&D Project Valuation Considering Changes of Economic Environment: A Case of a Pharmaceutical R&D Project. Sustainability 2018, 10, 933. [Google Scholar] [CrossRef]
- Chesbrough, H. Open Innovation: The New Imperative for Creating and Profiting from Technology; Harvard Business Press: Btighton, MA, USA, 2003; Volume 64. [Google Scholar]
- Hu, Y.; McNamara, P.; McLoughlin, D. Outbound Open Innovation in Bio-Pharmaceutical out-Licensing. Technovation 2015, 35, 46–58. [Google Scholar] [CrossRef]
- Dubickis, M.; Gaile-Sarkane, E. Transfer of Know-How Based on Learning Outcomes for Development of Open Innovation. J. Open Innov. Technol. Mark. Complex. 2017, 3, 4. [Google Scholar] [CrossRef]
- Ah Kim, S.; yun Ryoo, H.; joo Ahn, H. Student Customized Creative Education Model Based on Open Innovation. J. Open Innov. Technol. Mark. Complex. 2017, 3, 6. [Google Scholar] [CrossRef]
- Gambardella, A.; Panico, C. On the Management of Open Innovation. Res. Policy 2014, 43, 903–913. [Google Scholar] [CrossRef]
- Lee, S.; Park, G.; Yoon, B.; Park, J. Open Innovation in SMEs-An Intermediated Network Model. Res. Policy 2010, 39, 290–300. [Google Scholar] [CrossRef]
- Abramo, G.; Moro, P.A.; Ingegneria, F.; Tor, R.; Politecnico, V.; Politecnico, V.; Boehm, D.N.; Hogan, T.; Bradley, S.R.; Hayter, C.S.; et al. Leveraging External Sources of Innovation: A Review of Research on Open Innovation. Ind. Mark. Manag. 2013, 31, 814–831. [Google Scholar] [CrossRef] [Green Version]
- Antons, D.; Piller, F.T. Opening the Black Box of “Not Invented Here”: Attitudes, Decision Biases, and Behavioral Consequences. Acad. Manag. Perspect. 2015, 29, 193–217. [Google Scholar] [CrossRef]
- Dahlander, L.; Gann, D.M. How Open Is Innovation? Res. Policy 2010, 39, 699–709. [Google Scholar] [CrossRef]
- Michelino, F.; Lamberti, E.; Cammarano, A.; Caputo, M. Measuring Open Innovation in the Bio- Pharmaceutical Industry. Creat. Innov. Manag. 2015, 24, 4–28. [Google Scholar] [CrossRef]
- Yang, H.; Lee, H.J. Long-Term Collaboration Network Based on Clinicaltrials.Gov Database in the Pharmaceutical Industry. Sustainability 2018, 10, 322. [Google Scholar] [CrossRef]
Inside-Out | Outside-In | Coupled |
---|---|---|
|
|
|
All Deals | Deal Involving U.S. Companies | |||
---|---|---|---|---|
No. of Cases | Ratio | No. of Cases | Ratio | |
Total | 267,853 | 100.0% | 22,776 | 100.0% |
Inside-out | 48,013 | 17.9% | 5117 | 22.5% |
Outside-in | 48,013 | 17.9% | 4488 | 19.7% |
Coupled | 115,071 | 43.0% | 12,399 | 54.4% |
Closed | 222 | 0.1% | 772 | 3.4% |
Others | 56,534 | 21.1% | - | - |
Inside-Out | Outside-In | Coupled | Closed | ||
---|---|---|---|---|---|
No. of firms | 112 | 52 | 485 | 52 | |
No. of observations | 811 | 495 | 4761 | 407 | |
Y: Revenue | Max | 37,429.00 | 77,567.50 | 2,104,430.00 | 51,035.00 |
Min | −0.14 | 30.94 | −0.87 | 0.01 | |
Average | 996.16 | 2665.93 | 24,202.25 | 1807.20 | |
Median | 12.20 | 36.99 | 42.27 | 55.86 | |
S.D. | 4264.38 | 10,106.68 | 182,384.37 | 6276.77 | |
K: Assets | Max | 28,254.00 | 51,790.30 | 2,396,785.00 | 28,827.00 |
Min | 0.10 | 0.00 | 0.02 | 0.16 | |
Average | 892.57 | 2304.50 | 27,651.19 | 1729.99 | |
Median | 47.11 | 14.10 | 101.37 | 77.96 | |
S.D. | 3382.96 | 7445.09 | 203,254.75 | 5078.20 | |
M: R&D expense | Max | 409.00 | 10,991.00 | 59,504.00 | 430.00 |
Min | 0.01 | 0.00 | 0.00 | 0.00 | |
Average | 25.02 | 239.31 | 896.21 | 28.47 | |
Median | 6.99 | 4.88 | 16.60 | 3.78 | |
S.D. | 49.02 | 1147.00 | 5694.22 | 64.40 | |
L: Employees | Max | 20.40 | 112,089.00 | 128.10 | 62.00 |
Min | 0.00 | 0.04 | 0.00 | 0.00 | |
Average | 1.04 | 4047.89 | 4.15 | 3.19 | |
Median | 0.09 | 50.19 | 0.20 | 0.30 | |
S.D. | 2.99 | 14,960.71 | 13.61 | 8.62 |
Inside-Out | Outside-In | |||||
---|---|---|---|---|---|---|
TE | TGR_LP | TGR_QP | TE | TGR_LP | TGR_QP | |
Mean | 0.425 | 0.748 | 0.727 | 0.487 | 0.665 | 0.649 |
Median | 0.484 | 0.787 | 0.746 | 0.589 | 0.719 | 0.684 |
St. dev. | 0.274 | 0.147 | 0.122 | 0.274 | 0.201 | 0.178 |
Minimum | 0 | 0.067 | 0.086 | 0.001 | 0.012 | 0.024 |
Maximum | 0.927 | 1 | 1 | 0.946 | 1 | 1 |
Coupled | Closed | |||||
---|---|---|---|---|---|---|
TE | TGR_LP | TGR_QP | TE | TGR_LP | TGR_QP | |
Mean | 0.519 | 0.704 | 0.676 | 0.587 | 0.654 | 0.643 |
Median | 0.595 | 0.732 | 0.695 | 0.634 | 0.717 | 0.7 |
St. dev. | 0.239 | 0.182 | 0.156 | 0.258 | 0.206 | 0.185 |
Minimum | 0 | 0.042 | 0.041 | 0 | 0.003 | 0.004 |
Maximum | 1 | 1 | 1 | 0.96 | 1 | 1 |
Inside-Out | Outside-In | Coupled | Closed | |||||
---|---|---|---|---|---|---|---|---|
Coefficient | S.E. | Coefficient | S.E. | Coefficient | S.E. | Coefficient | S.E. | |
Constant | 3.827 | 0.889 | 2.458 | 0.567 | 6.211 | 0.320 | 4.918 | 0.370 |
lnx1 | −0.143 | 0.290 | 0.570 | 0.239 | −0.718 | 0.111 | −0.499 | 0.140 |
lnx2 | 0.191 | 0.178 | 0.038 ** | 0.177 | 0.185 | 0.065 | 0.056 * | 0.100 |
lnx3 | 0.602 | 0.329 | 0.313 | 0.211 | 1.343 | 0.112 | 0.931 | 0.109 |
(lnx1)2 | 0.113 | 0.026 | 0.028 ** | 0.026 | 0.124 | 0.011 | 0.126 | 0.014 |
(lnx2)2 | 0.003 *** | 0.011 | 0.025 ** | 0.024 | −0.015 ** | 0.005 | −0.014 ** | 0.005 |
(lnx3)2 | 0.003 *** | 0.031 | −0.027 ** | 0.019 | 0.032 ** | 0.010 | 0.002 *** | 0.010 |
(lnx1)(lnx2) | −0.080 * | 0.031 | −0.063 * | 0.042 | −0.034 ** | 0.014 | −0.015 ** | 0.019 |
(lnx2)(lnx3) | 0.023 ** | 0.031 | 0.031 ** | 0.035 | 0.063 * | 0.011 | 0.029 ** | 0.018 |
(lnx3)(lnx1) | −0.053 * | 0.052 | 0.009 * | 0.047 | −0.175 | 0.018 | −0.144 | 0.017 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, K.; Lee, D.; Shin, K.; Kim, E. Measuring the Efficiency of U.S. Pharmaceutical Companies Based on Open Innovation Types. J. Open Innov. Technol. Mark. Complex. 2018, 4, 34. https://doi.org/10.3390/joitmc4030034
Shin K, Lee D, Shin K, Kim E. Measuring the Efficiency of U.S. Pharmaceutical Companies Based on Open Innovation Types. Journal of Open Innovation: Technology, Market, and Complexity. 2018; 4(3):34. https://doi.org/10.3390/joitmc4030034
Chicago/Turabian StyleShin, Kisoon, Daeho Lee, Kwangsoo Shin, and Eungdo Kim. 2018. "Measuring the Efficiency of U.S. Pharmaceutical Companies Based on Open Innovation Types" Journal of Open Innovation: Technology, Market, and Complexity 4, no. 3: 34. https://doi.org/10.3390/joitmc4030034
APA StyleShin, K., Lee, D., Shin, K., & Kim, E. (2018). Measuring the Efficiency of U.S. Pharmaceutical Companies Based on Open Innovation Types. Journal of Open Innovation: Technology, Market, and Complexity, 4(3), 34. https://doi.org/10.3390/joitmc4030034