Consumer Adoption of Online Food Delivery Ordering (OFDO) Services in Pakistan: The Impact of the COVID-19 Pandemic Situation
Abstract
:1. Introduction
- RQ1:
- Does technology readiness influence the consumer’s intention to use OFDO services?
- RQ2:
- Do consumers’ intentions influence the consumers’ adoption behavior towards OFDO services?
- RQ3:
- Does situational influences (COVID-19) moderate the relationship between consumers’ intentions and consumer adoption behavior towards OFDO services?
2. Literature Review and Hypothesis Development
2.1. Online Food Delivery Ordering Services (OFDO)
2.2. Theoretical Underpinning
2.2.1. Theory of Technology Readiness (TR)
Optimism
Innovativeness
Insecurity
Discomfort
2.3. Consumer Adoption Intention to Use OFDO Services
2.4. Moderating Effect of Situational Influences (COVID-19)
3. Materials and Methods
4. Data Analysis and Results
4.1. Measurement Model
4.2. Structural Model
4.3. The Moderating Effect of Situational Influences (COVID-19)
4.4. Analysis of Multi-Group SEM
5. Discussion
6. Implications and Future Directions
6.1. Theoretical Contribution
6.2. Practical Implications
6.3. Limitations and Future Research Directions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Suhartanto, D.; Helmi Ali, M.; Tan, K.H.; Sjahroeddin, F.; Kusdibyo, L. Loyalty toward online food delivery service: The role of e-service quality and food quality. J. Foodserv. Bus. Res. 2019, 22, 81–97. [Google Scholar] [CrossRef]
- Sjahroeddin, F. The Role of E-S-Qual and Food Quality on Customer Satisfaction in Online Food Delivery Service. 2018. Available online: https://jurnal.polban.ac.id/ojs-3.1.2/proceeding/article/view/1097/898 (accessed on 7 August 2020).
- Statista, Retail E-Commerce Sales Worldwide from 2014 to 2023. 2020. Available online: https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/ (accessed on 14 August 2020).
- Abramovich, G. 15 Mind-Blowing Stats about Online Shopping in 2019. 2019. Available online: https://cmo.adobe.com/articles/2014/5/15-mind-blowing-stats-about-online-shopping-in-2019.html#gs.bb5e8i (accessed on 14 August 2020).
- Rahman, M.A.; Islam, M.A.; Esha, B.H.; Sultana, N.; Chakravorty, S. Consumer buying behavior towards online shopping: An empirical study on Dhaka city, Bangladesh. Cogent Bus. Manag. 2018, 5, 1–22. [Google Scholar] [CrossRef]
- Baubonienė, Z.; Gulevičiūtė, G. E-commerce factors influencing consumers ‘online shopping decision. Soc. Technol. 2015, 5, 74–81. [Google Scholar]
- Wen, C.; Prybutok, V.R.; Xu, C. An integrated model for customer online repurchase intention. J. Comput. Inf. Syst. 2011, 52, 14–23. [Google Scholar]
- Jusoh, Z.M.; Ling, G.H. Factors influencing consumers’ attitude towards e-commerce purchases through online shopping. Int. J. Humanit. Soc. Sci. 2012, 2, 223–230. [Google Scholar]
- Roh, M.; Park, K. Adoption of O2O food delivery services in South Korea: The moderating role of moral obligation in meal preparation. Int. J. Inf. Manag. 2019, 47, 262–273. [Google Scholar] [CrossRef]
- Gao, S.; Tang, O.; Wang, H.; Yin, P. Identifying competitors through comparative relation mining of online reviews in the restaurant industry. Int. J. Hosp. Manag. 2018, 71, 19–32. [Google Scholar] [CrossRef]
- Yeo, V.C.S.; Goh, S.K.; Rezaei, S. Consumer experiences, attitude and behavioral intention toward online food delivery (OFD) services. J. Retail. Consum. Serv. 2017, 35, 150–162. [Google Scholar] [CrossRef]
- Dospinescu, N.; Dospinescu, O.; Tatarusanu, M. Analysis of the Influence Factors on the Reputation of Food-Delivery Companies: Evidence from Romania. Sustainability 2020, 12, 4142. [Google Scholar] [CrossRef]
- Statista, Online Food Delivery. 2020. Available online: https://www.statista.com/outlook/374/100/online-food-delivery/worldwide (accessed on 15 August 2020).
- Gunden, N.; Morosan, C.; DeFranco, A. Consumers’ intentions to use online food delivery systems in the USA. Int. J. Contemp. Hosp. Manag. 2020, 32, 1325–1345. [Google Scholar] [CrossRef]
- Wei, L.H.; Osman, M.A.; Zakaria, N.; Bo, T. Adoption of e-commerce online shopping in Malaysia. In Proceedings of the IEEE 7th International Conference on E-Business Engineering, Shanghai, China, 10–12 November 2010; pp. 140–143. [Google Scholar]
- Digital Pakistan. Digital 2020: Pakistan—DataReportal–Global Digital Insights. 2020. Available online: https://datareportal.com/reports/digital-2020-pakistan (accessed on 15 August 2020).
- Gallup Pakistan. How did you order/deliver food at home. 2020. Available online: http://gallup.com.pk/83-of-pakistanis-who-had-food-delivered-at-home-in-the-past-year-placed-their-order-on-call-only-15-said-they-ordered-online-or-used-an-app/ (accessed on 15 August 2020).
- Belanche, D.; Flavián, M.; Pérez-Rueda, A. Mobile Apps Use and WOM in the Food Delivery Sector: The Role of Planned Behavior, Perceived Security and Customer Lifestyle Compatibility. Sustainability 2020, 12, 4275. [Google Scholar] [CrossRef]
- Ali, S.; Ullah, H.; Akbar, M.; Akhtar, W.; Zahid, H. Determinants of Consumer Intentions to Purchase Energy-Saving Household Products in Pakistan. Sustainability 2019, 11, 1462. [Google Scholar] [CrossRef] [Green Version]
- Parasuraman, A.; Colby, C.L. An Updated and Streamlined Technology Readiness Index. J. Serv. Res. 2015, 18, 59–74. [Google Scholar] [CrossRef]
- Annaraud, K.; Berezina, K. Predicting satisfaction and intentions to use online food delivery: What really makes a difference? J. Foodserv. Bus. Res. 2020, 23, 305–323. [Google Scholar] [CrossRef]
- Ray, A.; Dhir, A.; Bala, P.K.; Kaur, P. Why do people use food delivery apps (FDA)? A uses and gratification theory perspective. J. Retail. Consum. Serv. 2019, 51, 221–230. [Google Scholar] [CrossRef]
- Sultan, P.; Tarafder, T.; Pearson, D.; Henryks, J. Intention-behaviour gap and perceived behavioural control-behaviour gap in theory of planned behaviour: Moderating roles of communication, satisfaction and trust in organic food consumption. Food Qual. Prefer. 2020, 81, 103838. [Google Scholar] [CrossRef]
- Hassan, L.M.; Shiu, E.; Shaw, D. Who says there is an intention–behaviour gap? Assessing the empirical evidence of an intention–behaviour gap in ethical consumption. J. Bus. Ethics 2016, 136, 219–236. [Google Scholar] [CrossRef]
- Tan, B. Understanding consumer ethical decision making with respect to purchase of pirated software. J. Consum. Mark. 2002, 19, 96–111. [Google Scholar] [CrossRef]
- Belk, R. Situation Variables and Consumer Behavior. J. Consum. Res. 1975, 2, 157–164. [Google Scholar] [CrossRef]
- Chocarro, R.; Cortiñas, M.; Villanueva, M.L. Situational variables in online versus offline channel choice. Electron. Commer. Res. Appl. 2013, 12, 347–361. [Google Scholar] [CrossRef] [Green Version]
- Hand, C.; Riley, F.D.O.; Harris, P.; Singh, J.; Rettie, R. Online grocery shopping: The influence of situational factors. Eur. J. Mark. 2009, 43, 1205–1219. [Google Scholar] [CrossRef]
- Li, C.; Mirosa, M.; Bremer, P. Review of Online Food Delivery Platforms and their Impacts on Sustainability. Sustainability 2020, 12, 5528. [Google Scholar] [CrossRef]
- Ivanova, I. See How Much Business U.S. Restaurants are Losing Because of the Coronavirus. 2020. Available online: https://www.cbsnews.com/news/coronavirus-restaurant-business-decline-cities/ (accessed on 15 August 2020).
- Bagla, R.K.; Khan, J. Customers’ expectations and satisfaction with online food ordering portals. Prabandhan Indian J. Manag. 2017, 10, 31–44. [Google Scholar] [CrossRef]
- Pigatto, G.; Machado, J.G.; dos Santos Negreti, A.; Machado, L.M. Have you chosen your request? Analysis of online food delivery companies in Brazil. Br. Food J. 2017, 119, 639–657. [Google Scholar] [CrossRef]
- Ng, S.R.; Wong, S.Y.; Chong, L. Outsourcing to online food delivery services: Perspective of F&B business owners. J. Internet Bank. Commer. 2017, 22, 1–13. [Google Scholar]
- Ganapathi, P.; Abu-Shanab, E.A. Customer satisfaction with online food ordering portals in Qatar. Int. J. E-Serv. Mob. Appl. 2020, 12, 57–79. [Google Scholar] [CrossRef]
- Chai, L.T.; Yat, D.N.C. Online Food Delivery Services: Making Food Delivery the New Normal. J. Mark. Adv. Pract. 2019, 1, 62–77. [Google Scholar]
- Moriarty, B. 5 Reasons Why Your Restaurant Needs an Online Ordering System. Ind. Trends Top. 2016. Available online: https://www.starmicronics.com/blog/5-reasons-why-your-restaurant-need-an-online-ordering-system/ (accessed on 7 August 2020).
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Fishbein, M.; Ajzen, I. Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research; Addison-Wesley: Reading, MA, USA, 1975; Available online: https://people.umass.edu/aizen/f&a1975.html (accessed on 30 August 2020).
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Manage. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Parasuraman, A. Technology Readiness Index (Tri):A Multiple-Item Scale to Measure Readiness to Embrace New Technologies. J. Serv. Res. 2000, 2, 307–320. [Google Scholar] [CrossRef]
- Guhr, N.; Loi, T.; Wiegard, R.; Breitner, M.H. Technology Readiness in Customers’ Perception and Acceptance of M (obile)-Payment: An Empirical Study in Finland, Germany, the USA and Japan. Wirtsch. Proc. 2013, 8, 119–133. [Google Scholar]
- Kim, T.; Chiu, W. Consumer acceptance of sports wearable technology: The role of technology readiness. Int. J. Sport. Mark. Spons. 2019, 20, 109–126. [Google Scholar] [CrossRef]
- Meuter, M.L.; Ostrom, A.L.; Bitner, M.J.; Roundtree, R. The influence of technology anxiety on consumer use and experiences with self-service technologies. J. Bus. Res. 2003, 56, 899–906. [Google Scholar] [CrossRef]
- Tsikriktsis, N. A Technology Readiness-Based Taxonomy of Customers. J. Serv. Res. 2004, 7, 42–52. [Google Scholar] [CrossRef]
- Rojas-Méndez, J.I.; Parasuraman, A.; Papadopoulos, N. Demographics, attitudes, and technology readiness: A cross-cultural analysis and model validation. Mark. Intell. Plan. 2017, 35, 18–39. [Google Scholar] [CrossRef]
- Chiu, W.; Cho, H. The role of technology readiness in individuals’ intention to use health and fitness applications: A comparison between users and non-users. Asia Pac. J. Mark. Logist. 2020. [Google Scholar] [CrossRef]
- Wiese, M.; Humbani, M. Exploring technology readiness for mobile payment app users. Int. Rev. Retail. Distrib. Consum. Res. 2019, 30, 123–142. [Google Scholar] [CrossRef]
- Godoe, P.; Johansen, T.S. Understanding adoption of new technologies: Technology readiness and technology acceptance as an integrated concept. J. Eur. Psychol. Stud. 2012, 3, 38–52. [Google Scholar] [CrossRef]
- Vize, R.; Coughlan, J.; Kennedy, A.; Ellis-Chadwick, F. Technology readiness in a B2B online retail context: An examination of antecedents and outcomes. Ind. Mark. Manag. 2013, 42, 909–918. [Google Scholar] [CrossRef]
- Rahman, S.A.; Taghizadeh, S.K.; Ramayah, T.; Alam, M.M.D. Technology acceptance among micro-entrepreneurs in marginalized social strata: The case of social innovation in Bangladesh. Technol. Forecast. Soc. Chang. 2017, 118, 236–245. [Google Scholar] [CrossRef]
- Van Huy, L.; Nguyen, P.T.H.; Pham, L.; Berry, R. Technology readiness and satisfaction in Vietnam’s luxury hotels. Int. J. Manag. Decis. Mak. 2019, 18, 183–208. [Google Scholar]
- Walczuch, R.; Lemmink, J.; Streukens, S. The effect of service employees’ technology readiness on technology acceptance. Inf. Manag. 2007, 44, 206–215. [Google Scholar] [CrossRef]
- Chen, S.C.; Liu, M.L.; Lin, C.P. Integrating technology readiness into the expectation-confirmation model: An empirical study of mobile services. Cyberpsychology Behav. Soc. Netw. 2013, 16, 604–612. [Google Scholar] [CrossRef] [Green Version]
- Damerji, H. Technology Readiness Impact on Artificial Intelligence Technology Adoption. Ph.D. Thesis, University of La Verne, La Verne, CA, USA, 2019. [Google Scholar]
- Lin, J.S.C.; Hsieh, P.L. The influence of technology readiness on satisfaction and behavioral intentions toward self-service technologies. Comput. Human Behav. 2007, 23, 1597–1615. [Google Scholar] [CrossRef]
- Lu, J.; Wang, L.; Hayes, L.A. How do technology readiness, platform functionality and trust influence C2C user satisfaction? J. Electron. Commer. Res. 2012, 13, 50–69. [Google Scholar]
- Mummalaneni, V.; Meng, J.G.; Elliott, K.M. Consumer Technology Readiness and E-Service Quality in E-Tailing: What is the Impact on Predicting Online Purchasing? J. Internet Commer. 2016, 15, 311–331. [Google Scholar] [CrossRef]
- Sheth, J.N.; Newman, B.I.; Gross, B.L. Why We Buy What We Buy: A Theory of Consumption Values. J. Bus. Res. 1991, 22, 159–170. [Google Scholar] [CrossRef]
- Solaiman, M.; Halim, M.S.A.; Manaf, A.H.A.; Noor, N.A.M.; Noor, I.M.; Rana, S.S. Consumption Values and Green Purchase Behaviour an Empirical Study. Int. Bus. Manag. 2017, 11, 1223–1233. [Google Scholar]
- Larasati, N.; Santosa, P.I. Technology readiness and technology acceptance model in new technology implementation process in low technology SMEs. Int. J. Innov. Manag. Technol. 2017, 8, 113–117. [Google Scholar] [CrossRef]
- Leung, L.; Chen, C. E-health/m-health adoption and lifestyle improvements: Exploring the roles of technology readiness, the expectation-confirmation model, and health-related information activities. Telecomm. Policy 2019, 43, 563–575. [Google Scholar] [CrossRef] [Green Version]
- Pham, L.; Williamson, S.; Lane, P.; Limbu, Y.; Nguyen, P.T.H.; Coomer, T. Technology Readiness and Purchase Intention: Role of Perceived Value and Online Satisfaction in the Context of Luxury Hotels. Int. J. Manag. Decis. Mak. 2020, 19, 91–117. [Google Scholar]
- Rosen, L.D.; Weil, M.M. Adult and Teenage Use of Consumer, Business, and Entertainment Technology: Potholes on the Information Superhighway? J. Consum. Aff. 1995, 29, 55–84. [Google Scholar] [CrossRef]
- Pham, L.; Nguyen, H.T.P.; Huy, V.L.; Luse, D. Technology readiness and customer satisfaction in luxury hotels: A case study of Vietnam. Int. J. Entrep. 2018, 22, 1–23. [Google Scholar]
- Smit, C.; Roberts-Lombard, M.; Mpinganjira, M. Technology readiness and mobile self-service technology adoption in the airline industry: An emerging market perspective. Acta Commer. Res. J. Manag. Sci. 2018, 18, 1–12. [Google Scholar] [CrossRef]
- Ramos-de-Luna, I.; Montoro-Ríos, F.; Liébana-Cabanillas, F. Determinants of the intention to use NFC technology as a payment system: An acceptance model approach. Inf. Syst. E-Bus. Manag. 2016, 14, 293–314. [Google Scholar] [CrossRef]
- Upadhyay, P.; Chattopadhyay, M. Examining mobile based payment services adoption issues: A new approach using hierarchical clustering and self-organizing maps. J. Enterp. Inf. Manag. 2015, 28, 490–507. [Google Scholar] [CrossRef]
- Ndwandwe, V. In South Africa, Cash Is Consumers’ Hands-Down Choice, ByPYMNTS. Available online: https://www.pymnts.com/cash/2017/south-african-consumers-pick-cash/ (accessed on 7 August 2017).
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–339. [Google Scholar] [CrossRef] [Green Version]
- Zeithaml, V.A.; Berry, L.L.; Parasuraman, A. The Behavioral Consequences of Service Quality. J. Mark. 1996, 60, 31–46. [Google Scholar] [CrossRef]
- Ajzen, I.; Fishbein, M. Understanding Attitudes and Predicting Social Behavior; Prentice-Hall: Englewood Cliffs, NJ, USA, 1980. [Google Scholar]
- Wang, L.; Law, R.; Guillet, B.D.; Hung, K.; Fong, D.K.C. Impact of hotel website quality on online booking intentions: eTrust as a mediator. Int. J. Hosp. Manag. 2015, 47, 108–115. [Google Scholar] [CrossRef]
- Ajzen, I. From intentions to actions: A theory of planned behavior. In Action control; Springer: Berlin/Heidelberg, Germany, 1985; pp. 11–39. [Google Scholar]
- Moon, M.A.; Mohel, S.H.; Farooq, A. I green, you green, we all green: Testing the extended environmental theory of planned behavior among the university students of Pakistan. Soc. Sci. J. 2019. [Google Scholar] [CrossRef]
- Norton, T.A.; Zacher, H.; Ashkanasy, N.M.; Parker, S.L. Bridging the gap between green behavioral intentions and employee green behavior: The role of green psychological climate. J. Organ. Behav. 2017, 38, 996–1015. [Google Scholar] [CrossRef]
- Krueger, N.F.; Reilly, M.D.; Carsurud, A.L. Competing Models of Entrepreneurial Intention. J. Bus. Ventur. 2000, 15, 411–432. [Google Scholar] [CrossRef]
- Akbar, A.; Ali, S.; Ahmad, M.A.; Akbar, M.; Danish, M. Understanding the Antecedents of Organic Food Consumption in Pakistan: Moderating Role of Food Neophobia. Int. J. Environ. Res. Public Health 2019, 16, 4043. [Google Scholar] [CrossRef] [Green Version]
- Ajzen, I.; Brown, T.C.; Carvajal, F. Explaining the discrepancy between intentions and actions: The case of hypothetical bias in contingent valuation. Personal. Soc. Psychol. Bull. 2004, 30, 1108–1121. [Google Scholar] [CrossRef]
- Lai, C.K.M.; Cheng, E.W.L. Green purchase behavior of undergraduate students in Hong Kong. Soc. Sci. J. 2016, 53, 67–76. [Google Scholar] [CrossRef]
- Testa, F.; Sarti, S.; Frey, M. Are green consumers really green? Exploring the factors behind the actual consumption of organic food products. Bus. Strateg. Environ. 2019, 28, 327–338. [Google Scholar] [CrossRef]
- Auger, P.; Devinney, T.M. Do what consumers say matter? The misalignment of preferences with unconstrained ethical intentions. J. Bus. Ethics 2007, 76, 361–383. [Google Scholar] [CrossRef]
- Rehman, S.U.; Bhatti, A.; Mohamed, R.; Ayoup, H. The moderating role of trust and commitment between consumer purchase intention and online shopping behavior in the context of Pakistan. J. Glob. Entrep. Res. 2019, 9, 43. [Google Scholar] [CrossRef]
- Richards, T.J.; Rickard, B. COVID-19 impact on fruit and vegetable markets. Can. J. Agric. Econ. 2020, 68, 189–194. [Google Scholar] [CrossRef]
- Meyer, S. Understanding the COVID-19 Effect on Ecommerce. Big Commer. 2020. Available online: https://www.bigcommerce.com/blog/covid-19-ecommerce/#understanding-panic-buying-and-coronavirus (accessed on 30 August 2020).
- Nickle, A. How the Coronavirus Is Affecting the Produce Industry. Packer 2020. Available online: https://www.thepacker.com/article/how-coronavirus-affecting-produce-industry (accessed on 30 August 2020).
- Mohammed, R. How restaurants can survive right now. Harv. Bus. Rev. 2020. Available online: https://hbr.org/2020/03/how-restaurants-can-survive-right-now (accessed on 26 May 2020).
- Watanabe, T.; Omori, Y. Online Consumption During the COVID-19 Crisis: Evidence from Japan. Covid Econ. 2020, 23, 208–241. [Google Scholar]
- Wold, S. How Covid-19 Has Changed Shopper Behaviour. Xeim-Mark. Week. 2020. Available online: https://www.marketingweek.com/how-covid-19-has-changed-shopper-behaviour/ (accessed on 30 August 2020).
- Hall, M.C.; Prayag, G.; Fieger, P.; Dyason, D. Beyond panic buying: Consumption displacement and COVID-19. J. Serv. Manag. 2020, 1757–5818. [Google Scholar] [CrossRef]
- Bandura, A. Self-efficacy: Toward a unifying theory of behavioral change. Psychol. Rev. 1977, 84, 191–215. [Google Scholar] [CrossRef]
- Dabholkar, P.A.; Bagozzi, R.P. An Attitudinal Model of Technology-Based Self-Service: Moderating Effects of Consumer Traits and Situational Factors. J. Acad. Mark. Sci. 2002, 30, 184–201. [Google Scholar] [CrossRef]
- Dabholkar, P.A. Consumer evaluations of new technology-based self-service options: An investigation of alternative models of service quality. Int. J. Res. Mark. 1996, 13, 29–51. [Google Scholar] [CrossRef]
- Foxall, G.R.; Yani-de-Soriano, M.M. Situational influences on consumers’ attitudes and behavior. J. Bus. Res. 2005, 58, 518–525. [Google Scholar] [CrossRef]
- Engel, J.F.; Blackwell, R.D. Consumer Behavior; Dryden Press: Chicago, IL, USA, 1982. [Google Scholar]
- Nguyen, H.V.; Tran, H.X.; Van Huy, L.; Nguyen, X.N.; Do, M.T.; Nguyen, N. Online Book Shopping in Vietnam: The Impact of the COVID-19 Pandemic Situation. Publ. Res. Q. 2020, 1–9. [Google Scholar] [CrossRef]
- Cobanoglu, C.; Cobanoglu, N. The effect of incentives in web surveys: Application and ethical considerations. Int. J. Mark. Res. 2003, 45. [Google Scholar] [CrossRef]
- Denscombe, M. Web-based questionnaires and the mode effect: An evaluation based on completion rates and data contents of near-identical questionnaires delivered in different modes. Soc. Sci. Comput. Rev. 2006, 24, 246–254. [Google Scholar] [CrossRef]
- Akram, U.; Khan, M.K.; Tanveer, Y.; Hui, P.; Mehmood, K.; Ahmad, W. How website quality affects online impulse buying: Moderating effects of sales promotion and credit card use. Asia Pac. J. Mark. Logist. 2018, 30, 235–256. [Google Scholar] [CrossRef]
- Tariq, A.; Wang, C.; Tanveer, Y.; Akram, U.; Akram, Z. Organic food consumerism through social commerce in China. Asia Pac. J. Mark. Logist. 2019, 31, 202–222. [Google Scholar] [CrossRef]
- Reynolds, N.L.; Simintiras, A.C.; Diamantopoulos, A. Theoretical justification of sampling choices in international marketing research: Key issues and quidelines for researchers. J. Int. Bus. Stud. 2003, 34, 80–89. [Google Scholar] [CrossRef]
- Calder, B.; Phillips, L.W.; Tybout, A.M. Designing Research for Application. J. Consum. Res. 1981, 82, 197–207. [Google Scholar] [CrossRef]
- Ng, S.I.; Ho, J.A.; Lim, X.J.; Chong, K.L.; Latiff, K. Mirror, mirror on the wall, are we ready for Gen-Z in marketplace? A study of smart retailing technology in Malaysia. Young Consum. 2019. [Google Scholar] [CrossRef]
- Prasad, S.; Garg, A.; Prasad, S. Purchase decision of generation Y in an online environment. Mark. Intell. Plan. 2019, 37, 372–385. [Google Scholar] [CrossRef]
- Campbell, D.T. The Informant in Quantitative Research. Am. J. Sociol. 1955, 60, 339–342. [Google Scholar] [CrossRef]
- Yadav, R.; Pathak, G.S. Determinants of Consumers’ Green Purchase Behavior in a Developing Nation: Applying and Extending the Theory of Planned Behavior. Ecol. Econ. 2017, 134, 114–122. [Google Scholar] [CrossRef]
- Bearden, W.; Netemeyer, R. Handbook of Marketing Scales: Multi-Item Measures for Marketing and Consumer Behavior Research; Sage Publications, Inc.: Thousands Oak, CA, USA, 1999. [Google Scholar]
- Foddy, W. Constructing Questions for Interviews and Questionnaires: Theory and Practice in Social Research; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Allen, D.R.; Rao, T.R. Analysis of Customer Satisfaction Data: A Comprehensive Guide to Multivariate Statistical Analysis in Customer Satisfaction, Loyalty, and Service Quality Research; Asq Press: Milwaukee, WI, USA, 2000. [Google Scholar]
- Churchill, G.A.; Iacobucci, D. Marketing Research: Methodological Foundations; Dryden Press: New York, NY, USA, 2006. [Google Scholar]
- Green, S.B. How Many Subjects Does It Take To Do A Regression Analysis? Multivar. Behav. Res. 1991, 26, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. G*Power Version 3.1.2 [Computer Software]; Uiversität Kiel: Kiel, Germany, 2013. [Google Scholar]
- FAul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nulty, D.D. The adequacy of response rates to online and paper surveys: What can be done? Assess. Eval. High. Educ. 2008, 33, 301–314. [Google Scholar] [CrossRef] [Green Version]
- Ali, F.; Rasoolimanesh, S.M.; Sarstedt, M.; Ringle, C.M.; Ryu, K. An assessment of the use of partial least squares structural equation modeling (PLS-SEM) in hospitality research. Int. J. Contemp. Hosp. Manag. 2018, 30, 514–538. [Google Scholar] [CrossRef] [Green Version]
- Becker, J.-M.; Klein, K.; Wetzels, M. Hierarchical Latent Variable Models in PLS-SEM: Guidelines for Using Reflective-Formative Type Models. Long Range Plan 2012, 45, 359–394. [Google Scholar] [CrossRef]
- Ringle, C.M.; Wende, S.; Becker, J.M. SmartPLS 3; SmartPLS GmbH: Boenningstedt, Germany, 2015. [Google Scholar]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a Silver Bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Robinson, J.P.; Shaver, P.R.; Wrightsman, L.S. Criteria for Scale Selection and Evaluation, in Measures of Personality and Social Psychological Attitude; Academic Press: San Diego, CA, USA, 1991. [Google Scholar]
- DeVellis, R.F. Scale Development: Theory and Applications (Vol. 26); SAGE Publications: Thousand Oaks, CA, USA, 2016. [Google Scholar]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd ed.; SAGE Publications: Thousand Oaks, CA, USA, 2017; ISBN 9781452217444. [Google Scholar]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2014, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Kline, R.B. Principles and Practice of Structural Equation Modeling; Guilford Publications: New York, NY, USA, 2015. [Google Scholar]
- Henseler, J.; Sarstedt, M. Goodness-of-fit indices for partial least squares path modeling. Comput. Stat. 2013, 28, 565–580. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Earlbaum: New York, NY, USA, 1988; ISBN 0805802835. [Google Scholar]
- Henseler, J.; Hubona, G.; Ray, P.A. Using PLS path modeling in new technology research: Updated guidelines. Ind. Manag. Data Syst. 2016, 116, 2–20. [Google Scholar] [CrossRef]
- Quevedo-Silva, F.; Freire, O.; de Oliveira Lima-Filho, D.; Brandão, M.M.; Isabella, G.; Moreira, L.B. Intentions to purchase food through the internet: Developing and testing a model. Br. Food J. 2016, 118, 572–587. [Google Scholar] [CrossRef]
- Minbashrazgah, M.M.; Maleki, F.; Torabi, M. Green chicken purchase behavior: The moderating role of price transparency. Manag. Environ. Qual. Int. J. 2017, 28, 902–916. [Google Scholar] [CrossRef]
- Grewal, D.; Marmorstein, H.; Sharma, A. Communicating price information through semantic cues: The moderating effects of situation and discount size. J. Consum. Res. 1996, 23, 148–155. [Google Scholar] [CrossRef]
- Hashem, T.N. Examining the Influence of COVID 19 Pandemic in Changing Customers’ Orientation towards E-Shopping. Mod. Appl. Sci. 2020, 14. [Google Scholar] [CrossRef]
- Gutek, B.A.; Bikson, T.K. Differential experiences of men and women in computerized offices. Sex Roles 1985, 13, 123–136. [Google Scholar] [CrossRef]
- Harrison, A.W.; Rainer, R.K. The influence of individual differences on skill in end-user computing. J. Manag. Inf. Syst. 1992, 9, 93–111. [Google Scholar] [CrossRef]
- Gilroy, D.F.; Desai, H.B. Computer anxiety: Sex, race and age. Int. J. Man. Mach. Stud. 1986, 25, 711–719. [Google Scholar] [CrossRef]
- Elliot, K.M.; Hall, M.C. Assessing consumers’propensity to embrace self-service technologies: Are there gender differences? Mark. Manag. J. 2005, 15, 98–107. [Google Scholar]
- Hertzog, C.; Hultsch, D. Metacognition in Adulthood and Old Age; The Handbo.: Mahwah, NJ, USA, 2000. [Google Scholar]
- Hilgard, E.R.; Bower, G.H. Theories of Learning; Prentice-Hall: Englewood Cliffs, NJ, USA, 1975. [Google Scholar]
- Porter, C.E.; Donthu, N. Using the technology acceptance model to explain how attitudes determine Internet usage: The role of perceived access barriers and demographics. J. Bus. Res. 2006, 59, 999–1007. [Google Scholar] [CrossRef]
- Parasuraman, A.; Colby, C.L. Techno-Ready Marketing: How and Why Customers Adopt Technology; The Free Press: New York, NY, USA, 2001. [Google Scholar]
- Moghavvemi, S.; Salleh, N.A.M.; Sulaiman, A.; Abessi, M. Effect of external factors on intention-behaviour gap. Behav. Inf. Technol. 2015, 34, 1171–1185. [Google Scholar] [CrossRef]
- Cateora, P.; Papadopoulos, N.; Gilly, M.; Graham, J.L. International Marketing, 3rd ed.; McGraw-Hill Ryerson: Toronto, ON, Canada, 2011. [Google Scholar]
Variables | Categories | Number | Percentage |
---|---|---|---|
Gender | Male | 269 | 61.3 |
Female | 170 | 38.7 | |
Age (in years) | 18–24 | 256 | 58.3 |
25–34 | 116 | 26.4 | |
35–44 | 47 | 10.7 | |
45 and Over | 20 | 4.6 | |
Marital Status | Single | 318 | 72.4 |
Married | 121 | 27.6 | |
Education | Secondary level or below | 29 | 6.6 |
Higher Secondary level | 91 | 20.7 | |
Graduate-level | 110 | 25.1 | |
Master level | 160 | 36.4 | |
Professional | 49 | 11.2 | |
Occupation | Government Sector | 78 | 17.8 |
Private Sector | 24 | 5.5 | |
Self-Employed | 68 | 15.5 | |
Student | 203 | 46.2 | |
Housewife | 66 | 15.0 | |
Income (in PKR) | Mediocre | 132 | 30.1 |
Low Middle Class | 176 | 40.1 | |
Upper Middle Class | 88 | 20.0 | |
Rich | 43 | 9.8 | |
OFDO services usage frequency | Almost every day | 28 | 6.4 |
Few times a week | 98 | 22.3 | |
Once a week | 151 | 34.4 | |
Not even once a month | 32 | 7.3 | |
Once or twice a month | 130 | 29.6 | |
OFDO services usage duration | 1–6 months | 253 | 57.6 |
7–12 months | 106 | 24.1 | |
13–18 months | 20 | 4.6 | |
19–24 months | 28 | 6.4 | |
24+ months | 32 | 7.3 |
Constructs | Items | Loadings | AVE | Cronbach’s Alpha | CR |
---|---|---|---|---|---|
Optimism | |||||
OPT1 | 0.762 | 0.568 | 0.753 | 0.847 | |
OPT2 | 0.782 | ||||
OPT3 | 0.681 | ||||
OPT4 | 0.786 | ||||
Innovativeness | |||||
INN1 | 0.740 | 0.582 | 0.882 | 0.840 | |
INN2 | 0.815 | ||||
INN3 | 0.742 | ||||
INN4 | 0.751 | ||||
Insecurity | |||||
INS1 | 0.614 | 0.594 | 0.774 | 0.852 | |
INS2 | 0.824 | ||||
INS3 | 0.837 | ||||
INS4 | 0.787 | ||||
Discomfort | |||||
DIS1 | 0.715 | 0.505 | 0.837 | 0.803 | |
DIS2 | 0.683 | ||||
DIS3 | 0.747 | ||||
DIS4 | 0.696 | ||||
OFDO services Intention | |||||
OFDSI1 | 0.811 | 0.731 | 0.889 | 0.916 | |
OFDSI2 | 0.860 | ||||
OFDSI3 | 0.900 | ||||
OFDSI4 | 0.848 | ||||
Situational Influences (COVID-19) | |||||
SICOVID1 | 0.757 | 0.531 | 0.792 | 0.838 | |
SICOVID2 | 0.661 | ||||
SICOVID3 | 0.728 | ||||
SICOVID4 | 0.816 | ||||
SICOVID5 | 0.668 | ||||
OFDO services Adoption | |||||
OFDOSA1 | 0.779 | 0.564 | |||
OFDOSA2 | 0.696 | ||||
OFDOSA3 | 0.798 | ||||
OFDOSA4 | 0.726 |
OFDOSA | OFDOSI | DIS | INN | INS | OP | SI (COVID-19) | |
---|---|---|---|---|---|---|---|
OFDOSA | |||||||
OFDOSI | 0.798 | ||||||
DIS | 0.599 | 0.437 | |||||
INN | 0.567 | 0.402 | 0.584 | ||||
INS | 0.488 | 0.451 | 0.494 | 0.507 | |||
OPT | 0.614 | 0.540 | 0.528 | 0.493 | 0.373 | ||
SI (COVID-19) | 0.853 | 0.732 | 0.571 | 0.607 | 0.531 | 0.512 |
Hypothesis | Relationship | Path-Coefficient | Std. Error | t-Value | p-Value | Supported | f2 | R2 | Q2 | SRMR |
---|---|---|---|---|---|---|---|---|---|---|
H1 | OPT→OFDOSI | 0.302 | 0.045 | 6.807 | 0.000 | Yes | 0.101 | 0.290 | 0.204 | 0.066 |
H2 | INN→OFDOSI | 0.088 | 0.043 | 2.160 | 0.041 | Yes | 0.008 | |||
H3 | INS→OFDOSI | −0.201 | 0.040 | 5.339 | 0.000 | Yes | 0.045 | |||
H4 | DIS→OFDOSI | −0.140 | 0.043 | 3.504 | 0.001 | Yes | 0.020 | |||
H5 | OFDOSI→OFDOSA | 0.382 | 0.045 | 9.515 | 0.000 | Yes | 0.194 | 0.536 | 0.294 | |
Moderating effect | ||||||||||
H6 | SI (COVID-19)→ OFDOSA | 0.141 | 0.034 | 4.115 | 0.000 | Yes | 0.118 | 0.557 |
H1 | H2 | H3 | H4 | H5 | H6 | |
---|---|---|---|---|---|---|
OPTI | INNO | INSE | DISC | Int | SI | |
Age | ||||||
Young | 0.314 | 0.086 | 0.169 | 0.097 | 0.518 | 0.136 |
Elder | 0.211 | 0.077 | 0.213 | 0.125 | 0.339 | 0.127 |
Gender | ||||||
Male | 0.322 | 0.092 | 0.219 | 0.130 | 0.431 | 0.103 |
Female | 0.198 | 0.079 | 0.240 | 0.145 | 0.239 | 0.087 |
Income | ||||||
Low | 0.151 | 0.081 | 0.156 | 0.119 | 0.331 | 0.085 |
High | 0.182 | 0.109 | 0.139 | 0.097 | 0.542 | 0.116 |
Education | ||||||
Low | 0.211 | 0.092 | 0.203 | 0.117 | 0.307 | 0.067 |
High | 0.261 | 0.107 | 0.141 | 0.093 | 0.581 | 0.091 |
Usage Behavior | ||||||
Less Frequent | 0.201 | 0.070 | 0.182 | 0.137 | 0.403 | 0.103 |
More Frequent | 0.241 | 0.082 | 0.111 | 0.109 | 0.587 | 0.161 |
Usage Duration | ||||||
Up to One year | 0.336 | 0.113 | 0.129 | 0.091 | 0.496 | 0.147 |
Over One Year | 0.114 | 0.092 | 0.173 | 0.107 | 0.399 | 0.084 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, S.; Khalid, N.; Javed, H.M.U.; Islam, D.M.Z. Consumer Adoption of Online Food Delivery Ordering (OFDO) Services in Pakistan: The Impact of the COVID-19 Pandemic Situation. J. Open Innov. Technol. Mark. Complex. 2021, 7, 10. https://doi.org/10.3390/joitmc7010010
Ali S, Khalid N, Javed HMU, Islam DMZ. Consumer Adoption of Online Food Delivery Ordering (OFDO) Services in Pakistan: The Impact of the COVID-19 Pandemic Situation. Journal of Open Innovation: Technology, Market, and Complexity. 2021; 7(1):10. https://doi.org/10.3390/joitmc7010010
Chicago/Turabian StyleAli, Saqib, Nadeem Khalid, Hafiz Muhammad Usama Javed, and Dewan Md. Zahurul Islam. 2021. "Consumer Adoption of Online Food Delivery Ordering (OFDO) Services in Pakistan: The Impact of the COVID-19 Pandemic Situation" Journal of Open Innovation: Technology, Market, and Complexity 7, no. 1: 10. https://doi.org/10.3390/joitmc7010010
APA StyleAli, S., Khalid, N., Javed, H. M. U., & Islam, D. M. Z. (2021). Consumer Adoption of Online Food Delivery Ordering (OFDO) Services in Pakistan: The Impact of the COVID-19 Pandemic Situation. Journal of Open Innovation: Technology, Market, and Complexity, 7(1), 10. https://doi.org/10.3390/joitmc7010010