Open Innovation and Business Model of Health Food Industry in Asia
Abstract
:1. Introduction
2. Literature Review
2.1. Health Trends
2.2. Digital Technology
2.3. Market Concentration
2.4. Open Innovation
2.5. Business Model
3. Economic Approach
3.1. Model
3.2. Data Source
3.3. Methods
4. Results
4.1. Is Health and Wellness Food Consumption Sensitive to Health Trends, Digital Technology, and Market Concentration?
4.1.1. Alternative Empirical Results
4.1.2. Robustness Check
5. Discussion
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Diagnostic Testing in Alternative Models and Robustness Check
Variables | Definition | IPS | Pesaran-CD | CIPS | CADF | ||
---|---|---|---|---|---|---|---|
Level | First Diff. | Level | First Diff. | ||||
ln(ffufood) | FFU consumption | −1.915 | 25.774 * | −2.388 ** | −3.591 * | −2.020 | −3.591 * |
ln(ffupu) | FFU unit price | −1.152 | −1.347 | −1.837 | −2.722 * | −1.472 | −2.722 * |
ffubc | FFU brand concentration | −1.366 | 36.507 * | −2.027 | −3.337 * | −2.027 | −3.337 * |
ffudc | FFU distribution channel concentration | −2.009 | −1.749 *** | −2.387 * | −3.073 * | −1.963 | −3.073 * |
ln(bfyfood) | BFY consumption | −0.934 | 21.37 * | −1.810 | −2.128 *** | −1.499 | −2.128 *** |
ln(bfypu) | BFY unit price | −1.982 | 0.278 | −1.576 | −2.919 *** | −1.689 | −2.919 * |
bfybc | BFY brand concentration | - | 30.472 * | −0.632 | −1.519 | −0.632 | −1.519 |
bfydc | BFY distribution channel concentration | −0.989 | 1.319 | −1.288 | −2.269 ** | −1.128 | −2.269 ** |
ln(fffood) | FF consumption | −0.472 | 33.568 * | −2.293 ** | −3.063 * | −2.293 ** | −3.063 * |
ln(ffpu) | FF unit price | −1.129 | 4.479 * | −1.706 | −3.050 * | −0.878 | −3.050 * |
ffbc | FF brand concentration | −1.462 | 35.913 * | −2.518 ** | −2.572 * | −2.518 * | −2.572 * |
ffdc | FF distribution channel concentration | −0.874 | 1.161 | −2.037 | −2.510 ** | −2.037 | −2.510 * |
ln(nhfood) | NH consumption | 0.333 | 28.39 * | −1.653 | −2.128 | −1.653 | −2.128 *** |
ln(nhpu) | NH unit price | −0.804 | 5.929 * | −0.834 | −2.581 * | −0.713 | −2.581 * |
nhbc | NH brand concentration | −1.346 | 35.887 * | −1.727 | −2.578 * | −1.879 | −2.578 * |
nhdc | NH distribution channel concentration | −1.950 | 0.816 | −1.709 | −2.644 * | −1.218 | −2.644 * |
ln(orgfood) | ORG consumption | - | 28.00 * | −1.136 | −2.187 *** | −0.834 | −2.187 *** |
ln(orgpu) | ORG unit price | - | 0.833 | −1.047 | −2.242 *** | −1.047 | −2.242 ** |
orgbc | ORG brand concentration | - | 24.615 * | −1.762 | −2.506 ** | −1.310 | −2.506 * |
orgdc | ORG distribution channel concentration | - | −0.618 | −1.180 | −1.676 | −1.180 | −2.158 *** |
ln(hwpc) | HW consumption per capita | −1.263 | 32.261 * | −1.913 | −3.021 * | −1.759 | −3.021 * |
ln(hwpc-ow) | HW consumption per overweight population | −1.697 | 7.167 * | −2.288 ** | −2.973 * | −2.288 ** | −2.973 * |
ln(hwpc-ob) | HW consumption per obese population | −1.402 | 5.871 * | −1.912 | −3.429 * | −1.599 | −3.429 * |
Variables | Definition | Skewness | Kurtosis | Shapiro–Wilk Test | Shapiro–Francia Test |
---|---|---|---|---|---|
ln(ffufood) | FFU consumption | 0.647 | 3.289 | 4.711 * | 4.305 * |
ln(ffupu) | FFU unit price | 1.006 | 4.862 | 6.037 * | 5.578 * |
ffubc | FFU brand concentration | 0.373 | 2.255 | 4.334 * | 1.034 |
ffudc | FFU distribution channel concentration | 0.361 | 2.493 | 4.799 * | 4.343 * |
ln(bfyfood) | BFY consumption | −0.783 | 4.433 | 6.329 * | 5.867 * |
ln(bfypu) | BFY unit price | 0.098 | 2.567 | 5.327 * | 4.845 * |
bfybc | BFY brand concentration | 0.910 | 3.611 | 5.312 * | 3.158 * |
bfydc | BFY distribution channel concentration | −0.124 | 2.796 | 3.183 * | 2.938 * |
ln(fffood) | FF consumption | 0.680 | 3.444 | 5.626 * | 5.180 * |
ln(ffpu) | FF unit price | 0.133 | 2.631 | 3.278 * | 2.864 * |
ffbc | FF brand concentration | 0.835 | 3.112 | 4.915 * | 2.525 * |
ffdc | FF distribution channel concentration | 0.035 | 3.230 | 5.261 * | 4.811 * |
ln(nhfood) | NH consumption | 0.353 | 2.192 | 4.358 * | 3.895 * |
ln(nhpu) | NH unit price | −1.198 | 4.016 | 6.722 * | 6.185 * |
nhbc | NH brand concentration | 0.870 | 2.650 | 5.909 * | 4.355 * |
nhdc | NH distribution channel concentration | −0.319 | 3.555 | 4.693 * | 4.291 * |
ln(orgfood) | ORG consumption | 0.099 | 2.085 | 3.375 * | 2.905 * |
ln(orgpu) | ORG unit price | −2.018 | 5.464 | 9.555 * | 8.839 * |
orgbc | ORG brand concentration | 0.707 | 2.842 | 4.701 * | 0.746 |
orgdc | ORG distribution channel concentration | −0.472 | 3.481 | 5.729 * | 5.363 * |
ln(hwpc) | HW consumption per capita | −0.642 | 3.359 | 4.953 * | 4.540 * |
ln(hwpc-ow) | HW consumption per overweight population | −0.244 | 3.725 | 5.022 * | 4.649 * |
ln(hwpc-ob) | HW consumption per obese population | 0.122 | 3.185 | 3.780 * | 3.425 * |
Appendix B. Changes in Health Trends, Digital Technology, and Market Concentration
Country | 2015 | 2020 | ||||||
---|---|---|---|---|---|---|---|---|
HW Food | Consumer Health | Mobile Internet | Mobile Telephone | HW Food | Consumer Health | Mobile Internet | Mobile Telephone | |
Australia | 3.8 | 11.2 | 12.0 | 2.8 | 3.6 | 2.3 | 5.3 | 2.0 |
China | 3.2 | 7.5 | 33.6 | 0.5 | −0.1 | −1.7 | 17.9 | 5.0 |
Hong Kong | 8.3 | −3.3 | −0.1 | −1.4 | −27.4 | −13.9 | 8.4 | 2.9 |
India | 10.5 | 5.3 | 71.5 | 6.0 | 7.5 | 0.5 | 18.8 | 2.2 |
Indonesia | 2.2 | 3.7 | 22.5 | 4.1 | 5.3 | 2.1 | 5.0 | 3.5 |
Japan | 4.0 | 1.5 | 3.9 | 1.7 | 5.2 | −1.3 | 3.3 | 2.9 |
Malaysia | 3.7 | 2.4 | 57.6 | −1.8 | 3.1 | 7.9 | 6.6 | 3.1 |
New Zealand | 4.4 | 3.0 | 24.4 | 9.8 | 3.2 | 1.4 | 10.2 | 2.1 |
Philippines | 4.7 | 5.6 | 51.2 | 5.8 | 4.7 | 4.8 | 12.9 | 6.2 |
Singapore | 4.9 | 4.3 | 3.0 | 1.6 | 7.4 | 3.7 | 4.1 | 3.4 |
South Korea | 1.2 | 4.1 | 1.5 | 2.9 | 2.6 | 2.2 | 4.3 | 3.3 |
Taiwan | 3.6 | 4.7 | 19.9 | −2.2 | 2.2 | 4.5 | 5.0 | 0.6 |
Thailand | 6.7 | 10.5 | 11.2 | 6.0 | 1.3 | −5.3 | 5.9 | 3.8 |
Vietnam | 9.0 | 13.7 | 24.5 | −11.6 | 2.5 | 11.3 | 8.9 | 3.0 |
Country | 2015 | 2020 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
No. Brands | HHI Brands | Share of Store Channels | Share of Non-Store Channels | HHI Distribution Channels | No. Brands | HHI Brands | Share of Store Channels | Share of Non-Store Channels | HHI Distribution Channels | |
Australia | 89 | 0.085 | 94.83 | 5.16 | 0.618 | 86 | 0.098 | 94.22 | 5.77 | 0.638 |
China | 79 | 0.245 | 95.75 | 4.25 | 0.531 | 78 | 0.203 | 91.42 | 8.58 | 0.495 |
Hong Kong | 51 | 0.105 | 99.54 | 0.45 | 0.408 | 51 | 0.144 | 98.02 | 1.99 | 0.459 |
India | 53 | 0.233 | 99.96 | 0.03 | 0.712 | 50 | 0.258 | 99.59 | 0.42 | 0.682 |
Indonesia | 51 | 0.141 | 99.60 | 0.40 | 0.578 | 51 | 0.175 | 98.46 | 1.54 | 0.569 |
Japan | 45 | 0.384 | 86.58 | 13.42 | 0.291 | 44 | 0.383 | 85.37 | 14.63 | 0.290 |
Malaysia | 55 | 0.081 | 89.95 | 10.05 | 0.624 | 53 | 0.087 | 89.97 | 11.02 | 0.626 |
New Zealand | 53 | 0.079 | 98.86 | 1.13 | 0.701 | 54 | 0.078 | 97.20 | 2.80 | 0.690 |
Philippines | 44 | 0.115 | 98.53 | 1.48 | 0.553 | 43 | 0.120 | 97.43 | 2.57 | 0.568 |
Singapore | 56 | 0.097 | 95.21 | 4.79 | 0.547 | 55 | 0.111 | 92.54 | 7.45 | 0.532 |
South Korea | 43 | 0.378 | 76.67 | 20.33 | 0.422 | 46 | 0.349 | 77.77 | 22.23 | 0.416 |
Taiwan | 62 | 0.227 | 86.64 | 13.36 | 0.303 | 62 | 0.243 | 84.02 | 15.99 | 0.292 |
Thailand | 42 | 0.107 | 90.73 | 9.27 | 0.594 | 51 | 0.116 | 92.08 | 7.92 | 0.590 |
Vietnam | 34 | 0.328 | 99.96 | 0.04 | 0.405 | 33 | 0.343 | 99.26 | 0.74 | 0.379 |
References
- Dietz, W.H. You Are What You Eat—What You Eat is What You Are. J. Adolesc. Health Care 1990, 11, 76–81. [Google Scholar] [CrossRef]
- Earl, S. Inform or A Study of Double. Nutr. Food Sci. 1986, 86, 10–12. [Google Scholar] [CrossRef]
- Shapin, S. ‘You Are What You Eat’: Historical Changes in Ideas about Food and Identity. Hist. Res. 2014, 87, 377–392. [Google Scholar] [CrossRef]
- Brüssow, H.; Parkinson, S.J. You Are What You Eat. Nat. Biotechnol. 2014, 32, 243–245. [Google Scholar] [CrossRef]
- Zmora, N.; Suez, J.; Elinav, E. You Are What You Eat: Diet, Health and the Gut Microbiota. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 35–56. [Google Scholar] [CrossRef]
- Vartanian, L.R.; Herman, C.P.; Polivy, J. Consumption Stereotypes and Impression Management: How You Are What You Eat. Appetite 2007, 48, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Steils, N.; Obaidalahe, Z. “Social Food”: Food Literacy Co-construction and Distortion on Social Media. Food Policy 2020, 95, 101932. [Google Scholar] [CrossRef]
- Pietrykowski, B. You Are What You Eat: The Social Economy of the Slow Food Movement. Rev. Soc. Econ. 2004, 62, 307–321. [Google Scholar] [CrossRef]
- Ogunniyi, A.I.; Mavrotas, G.; Olagunju, K.O.; Fadare, O.; Adedoyin, R. Governance quality, remittances and their implications for food and nutrition security in Sub-Saharan Africa. World Dev. 2020, 127, 104752. [Google Scholar] [CrossRef]
- Schutter, O.D.; Jacobs, N.; Clément, C. A ‘Common Food Policy’ for Europe: How Governance Reforms can Spark a Shift to Healthy Diets and Sustainable Food Systems. Food Policy 2020, 96, 101849. [Google Scholar] [CrossRef]
- Nakat, Z.; Bou-Mitri, C. COVID-19 and the Food Industry: Readiness Assessment. Food Control. 2021, 121, 107661. [Google Scholar] [CrossRef]
- Cobre, A.F.; Surek, M.; Vilhena, R.O.; Böger, B.; Fachi, M.M.; Momade, D.R.; Tonin, F.S.; Sarti, F.M.; Pontarolo, R. Influence of Foods and Nutrients on COVID-19 Recovery: A Multivariate Analysis of Data from 170 Countries Using a Generalized Linear Model. Clin. Nutr. 2021, in press. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, S.R.; Vidal, L.; Ares, G.; Chheang, S.L.; Spinelli, S. Healthier eating: COVID-19 disruption as a catalyst for positive change. Food Qual. Prefer. 2021, 92, 104220. [Google Scholar] [CrossRef]
- Han, S.; Roy, P.K.; Hossain, M.I.; Byun, K.-H.; Choi, C.; Ha, S.-D. COVID-19 pandemic crisis and food safety: Implications and inactivation strategies. Trends Food Sci. Technol. 2021, 109, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Teng, P.; Chew, P.; Smith, G.; Copeland, L. Food system resilience and COVID-19—Lessons from the Asian experience. Glob. Food Sec. 2021, 28, 100501. [Google Scholar] [CrossRef]
- Galanakis, C.M. The Food Systems in the Era of the Coronavirus (COVID-19) Pandemic Crisis. Foods 2020, 9, 523. [Google Scholar] [CrossRef]
- Cranfield, J. Framing consumer food demand responses in a viral pandemic. Can. J. Agric. Econ. 2020, 68, 151–156. [Google Scholar] [CrossRef]
- Goddard, E. The impact of COVID-19 on food retail and food service in Canada: Preliminary assessment. Can. J. Agric. Econ. 2020, 68, 157–161. [Google Scholar] [CrossRef]
- Galanakis, C.H.; Rizou, M.; Aldawoud, T.M.S.; Ucak, I.; Rowan, N.J. Innovations and technology disruptions in the food sector within the COVID-19 pandemic and post-lockdown era. Trends Food Sci. Technol. 2021, 110, 193–200. [Google Scholar] [CrossRef]
- Ali, S.; Khalid, N.; Javed, H.M.U.; Islam, D.M.Z. Consumer Adoption of Online Food Delivery Ordering (OFDO) Services in Pakistan: The Impact of the COVID-19 Pandemic Situation. J. Open Innov. Technol. Mark. Complex. 2021, 7, 10. [Google Scholar] [CrossRef]
- International Telecommunication Union (ITU). The ICT Development Index (IDI): Conceptual Framework and Methodology. Available online: https://www.itu.int/en/ITU-D/Statistics/Pages/publications/mis/methodology.aspx (accessed on 4 July 2021).
- Nunes, R.; Silva, V.L.; Consiglio-Kasemodel, M.G.; Polizer, Y.J.; Saes, M.S.M.; Fávaro-Trindade, C.S. Assessing global changing food patterns: A country-level analysis on the consumption of food products with health and wellness claims. J. Clean. Prod. 2020, 264, 121613. [Google Scholar] [CrossRef]
- Euromonitor International, Health and Wellness [Data Set]. Available online: https://www-portal-euromonitor-com.proxy.library.mfu.ac.th/portal/statisticsevolution/index. (accessed on 1 March 2021).
- Fanzo, J. Healthy and Sustainable Diets and Food Systems: The Key to Achieving Sustainable Development Goal 2? Food Ethics 2019, 4, 159–174. [Google Scholar] [CrossRef]
- Khan, R.S.; Grigor, J.; Winger, R.; Win, A. Functional food product development—Opportunities and challenges for food manufacturers. Trends Food Sci. Technol. 2013, 30, 27–37. [Google Scholar] [CrossRef]
- Falguera, V.; Aliguer, N.; Falguera, M. An integrated approach to current trends in food consumption: Moving toward functional and organic products? Food Control 2012, 26, 274–281. [Google Scholar] [CrossRef]
- Ali, T.; Ali, J. Factors affecting the consumers’ willingness to pay for health and wellness food products. J. Sci. Food Agric. 2020, 2, 100076. [Google Scholar] [CrossRef]
- Chen, M.-F. The joint moderating effect of health consciousness and healthy lifestyle on consumers’ willingness to use functional foods in Taiwan. Appetite 2011, 57, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Kushwah, S.; Dhir, A.; Sagar, M.; Gupta, B. Determinants of organic food consumption. A systematic literature review on motives and barriers. Appetite 2019, 143. [Google Scholar] [CrossRef]
- Nagaraj, S. Role of consumer health consciousness, food safety & attitude on organic food purchase in emerging market: A serial mediation model. J. Retail. Consum. Serv. 2021, 59, 102423. [Google Scholar] [CrossRef]
- Pham, T.H.; Nguyen, T.N.; Phan, T.T.H.; Nguyen, N.T. Evaluating the purchase behaviour of organic food by young consumers in an emerging market economy. J. Strateg. Mark. 2019, 27, 540–556. [Google Scholar] [CrossRef]
- Liu, C.; Zheng, Y.; Cao, D. An analysis of factors affecting selection of organic food: Perception of consumers in China regarding weak signals. Appetite 2021, 161, 105145. [Google Scholar] [CrossRef]
- Sumi, R.S.; Kabir, G. Factors Affecting the Buying Intention of Organic Tea Consumers of Bangladesh. J. Open Innov. Technol. Mark. Complex. 2018, 4, 24. [Google Scholar] [CrossRef] [Green Version]
- Miranda-Ackerman, M.A.; Colín-Chávez, C. Food Supply Chain Demand and Optimization. In Encyclopedia of Food Security and Sustainability; Pasquale, F., Elliot, M.B., Jock, R.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 455–464. [Google Scholar] [CrossRef]
- Samoggia, A.; Monticone, F.; Bertazzoli, A. Innovative Digital Technologies for Purchasing and Consumption in Urban and Regional Agro-Food Systems: A Systematic Review. Foods 2021, 10, 208. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Mirosa, M.; Bremer, P. Review of Online Food Delivery Platforms and their Impacts on Sustainability. Sustainability 2020, 12, 5528. [Google Scholar] [CrossRef]
- Maimaiti, M.; Zhao, X.; Jia, M.; Ru, Y.; Xhu, S. How we eat determines what we become: Opportunities and challenges brought by food delivery industry in a changing world in China. Eur. J. Clin. Nutr. 2018, 72, 1282–1286. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-S.; Liang, C.-H.; Liao, S.-Y.; Kuo, H.-Y. Consumer Attitudes and Purchase Intentions toward Food Delivery Platform Services. Sustainability 2020, 12, 177. [Google Scholar] [CrossRef]
- Elms, J.; de Kervenoael, R.; Hallsworth, A. Internet or store? An ethnographic study of consumers’ internet and store-based grocery shopping practices. J. Retail. Consum. Serv. 2016, 32, 234–243. [Google Scholar] [CrossRef] [Green Version]
- Lemke, M.; Schifferstein, H.N.J. The use of ICT devices as part of the solo eating experience. Appetite 2021, 105297. [Google Scholar] [CrossRef]
- Malenkov, Y.; Kapustina, I.; Kudryavtseva, G.; Shishkin, V.V.; Shishkin, V.I. Digitalization and Strategic Transformation of Retail Chain Stores: Trends, Impacts, Prospects. J. Open Innov. Technol. Mark. Complex. 2021, 7, 108. [Google Scholar] [CrossRef]
- Dubé, L.; McRae, C.; Wu, Y.-H.; Ghosh, S.; Allen, S.; Ross, D.; Ray, S.; Joshi, P.K.; McDermott, J.; Jha, S.; et al. Impact of the eKutir ICT-enabled social enterprise and its distributed micro-entrepreneur strategy on fruit and vegetable consumption: A quasi-experimental study in rural and urban communities in Odisha, India. Food Policy 2020, 90, 101787. [Google Scholar] [CrossRef]
- Davies, A.R. Co-creating sustainable eating futures: Technology, ICT and citizen–consumer ambivalence. Futures 2014, 62, 181–193. [Google Scholar] [CrossRef]
- Hassen, T.B.; Bilali, H.E.; Allahyari, M.S.; Berjan, S.; Fotina, O. Food purchase and eating behavior during the COVID-19 pandemic: A cross-sectional survey of Russian Adults. Appetite 2021, 165, 105309. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Costa, A.I.A. Dynamics of open innovation in the food industry. Trends Food Sci. Technol. 2008, 19, 574–580. [Google Scholar] [CrossRef]
- Nambisan, S.; Siegel, D.; Kenney, M. On open innovation, platforms, and entrepreneurship. Strateg. Entrep. J. 2018, 12, 354–368. [Google Scholar] [CrossRef]
- Dam, I.V.; Wood, B.; Sacks, G.; Allais, O.; Vandevijvere, S. A detailed mapping of the food industry in the European single market: Similarities and differences in market structure across countries and sectors. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 54. [Google Scholar] [CrossRef]
- Brezina, I.; Pekár, J.; Čičková, Z.; Reiff, M. Herfindahl–Hirschman index level of concentration values modification and analysis of their change. Cent Eur. J. Oper. Res. 2016, 24, 49–72. [Google Scholar] [CrossRef]
- Tanusondjaja, A.; Dunn, S.; Miari, C. Examining manufacturer concentration metrics in consumer packaged goods. Int. J. Mark. Res. 2020, 1–23. [Google Scholar] [CrossRef]
- Ali, T.; Alam, A. Understanding Competition across Retail Distribution Channels of Health and Wellness Food Products in India. J. Asia Pac. Bus. 2017, 18, 117–130. [Google Scholar] [CrossRef]
- Ali, T.; Alam, A.; Ali, J. Market structure analysis of health and wellness food products in India. Br. Food J. 2015, 117, 1859–1871. [Google Scholar] [CrossRef]
- Mulenga, B.P.; Ngoma, H.; Nkonde, C. Produce to eat or sell: Panel data structural equation modeling of market participation and food dietary diversity in Zambia. Food Policy 2021, 102035. [Google Scholar] [CrossRef]
- Hovhannisyan, V.; Bozic, M. The effects of retail concentration on retail dairy product prices in the United States. Int. J. Dairy Sci. 2016, 99, 4928–4938. [Google Scholar] [CrossRef] [Green Version]
- Aalto-Setälä, V. The effect of concentration and market power on food prices: Evidence from Finland. J. Retail. 2002, 78, 207–216. [Google Scholar] [CrossRef]
- Tsartsou, E.; Proutsos, N.; Papadopoulos, I.; Tzouvelekas, V.; Castanas, E.; Kampa, M. Consumers’ attitude toward dietary supplements and functional food: A prospective survey in a Greek population sample. Hormones 2021, 20, 177–188. [Google Scholar] [CrossRef]
- Chesbrough, H.W. Open Innovation. The New Imperative for Creating and Profiting from Technology; Harvard Business School Press: Cambridge, MA, USA, 2003; pp. 43–62. [Google Scholar]
- Tomlinson, P.R.; Fai, F.M. The nature of SME co-operation and innovation: A multi-scalar and multi-dimensional analysis. Int. J. Prod. Econ. 2013, 141, 316–326. [Google Scholar] [CrossRef] [Green Version]
- Valdez-Juárez, L.E.; Gallardo-Vázquez, D.; Ramos-Escobar, E.A. Online buyers and open innovation: Security, experience, and satisfaction. J. Open Innov. Technol. Mark. Complex. 2021, 7, 37. [Google Scholar] [CrossRef]
- Mikheev, A.A.; Krasnov, A.; Griffith, R.; Draganov, M. The interaction model within Phygital environment as an implementation of the open innovation concept. J. Open Innov. Technol. Mark. Complex. 2021, 7, 114. [Google Scholar] [CrossRef]
- Markovic, S.; Koporcic, N.; Arslanagic-Kalajdzic, M.; Kadic-Maglajlic, S.; Bagherzadeh, M.; Islam, N. Business-to-business open innovation: COVID-19 lessons for small and medium-sized enterprises from emerging markets. Technol. Forecast Soc. Chang. 2021, 170, 120883. [Google Scholar] [CrossRef]
- Nuthalapati, C.S.R.; Nuthalapati, C. Has Open innovation taken root in India? Evidence from startups working in food value chains. Circ. Econ. Sustain. 2021. [Google Scholar] [CrossRef]
- Kafetzopoulos, D.; Vouzas, F.; Skalkos, D. Developing and validating an innovation drivers’ measurement instrument in the agri-food sector. Br. Food J. 2020, 122, 1199–1214. [Google Scholar] [CrossRef]
- Bogers, M.; Chesbrough, H.; Strand, R. Sustainable open innovation to address a grand challenge: Lessons from Carlsberg and the Green Fiber Bottle. Br. Food J. 2020, 122, 1505–1517. [Google Scholar] [CrossRef]
- Alvarez-Meaza, I.; Pikatza-Gorrotxategi, N.; Rio-Belver, R.M. Sustainable business model based on open innovation: Case study of Iberdrola. Sustainability 2020, 12, 645. [Google Scholar] [CrossRef]
- Mahdad, M.; Marco, C.E.D.; Piccaluga, A.; Minin, A.D. Harnessing adaptive capacity to close the Pandora’s Box of open innovation. Ind. Innov. 2020, 27, 264–284. [Google Scholar] [CrossRef]
- Osterwalder, A.; Pigneur, Y. Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Curtis, S.K. Business model patterns in the sharing economy. Sustain. Prod. Consum. 2021, 27, 1650–1671. [Google Scholar] [CrossRef]
- Bocken, N.M.P.; Weissbrod, I.; Antikainen, M. Business model experimentation for the circular economy: Definition and approaches. Circ. Econ. Sustain. 2021, 1, 49–81. [Google Scholar] [CrossRef]
- Barth, H.; Ulvenblad, P.; Ulvenblad, P.O.; Hoveskog, M. Unpacking sustainable business models in the Swedish agricultural sector—The challenges of technological, social and organisational innovation. J. Clean. Prod. 2021, 304, 127004. [Google Scholar] [CrossRef]
- Danse, M.; Klerkx, L.; Reintjes, J.; Rabbinge, R.; Leeuwis, C. Unravelling inclusive business models for achieving food and nutrition security in BOP markets. Glob. Food Sec. 2020, 24, 100354. [Google Scholar] [CrossRef]
- Björklund, T.A.; Mikkonen, M.; Mattila, P.; van der Marel, F. Expanding entrepreneurial solution spaces in times of crisis: Business model experimentation amongst packaged food and beverage ventures. J. Bus. Ventur. Insights 2020, 14, e00197. [Google Scholar] [CrossRef]
- Branstad, A.; Solem, B.A. Emerging theories of consumer-driven market innovation, adoption, and diffusion: A selective review of consumer-oriented studies. J. Bus. Res. 2020, 116, 561–571. [Google Scholar] [CrossRef]
- Frenkel, A.; Maital, A.; Leck, E.; Israel, E. Demand-driven innovation: An integrative systems-based review of the literature. Int. J. Innov. Technol. Manag. 2015, 12, 1550008. [Google Scholar] [CrossRef]
- Pesaran, M.H. General diagnostic tests for cross-sectional dependence in panels. Empir. Econ. 2021, 60, 13–50. [Google Scholar] [CrossRef]
- Im, K.S.; Pesaran, M.H.; Shin, Y. Testing for unit roots in heterogeneous panels. J. Econ. 2003, 115, 53–74. [Google Scholar] [CrossRef]
- Pesaran, M.H. A simple panel unit root test in the presence of cross-section dependence. J. Appl. Econ. 2007, 22, 265–312. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Powell, D. Quantile Regression with Nonadditive Fixed Effects. Unpublished Paper. 2020. Available online: https://sites.google.com/site/davidmatthewpowell/quantile-regression-with-nonadditive-fixed-effects (accessed on 5 July 2021).
- Powell, D.; Wagner, J. The exporter productivity premium along the productivity distribution: Evidence from quantile regression with nonadditive firm fixed effects. Rev. World Econ. 2014, 150, 763–785. [Google Scholar] [CrossRef]
- IMD World Competitiveness Center (IMD), IMD World Digital Competitiveness Ranking 2020. Available online: https://www.imd.org/centers/world-competitiveness-center/rankings/world-digital-competitiveness/ (accessed on 5 July 2021).
Variables | Abbreviation | Obs. | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|---|
Health and wellness food consumption | hwfood | 210 | 7836 | 14,024 | 503 | 73,413 |
Unit price | hwpu | 210 | 5328 | 2497 | 2385 | 15,221 |
Brand concentration | hwbc | 210 | 0.128 | 0.130 | 0.076 | 0.495 |
Distribution channel concentration | hwdc | 210 | 0.524 | 0.131 | 0.287 | 0.802 |
Health trends | chgw | 210 | 3.785 | 3.864 | −13.895 | 15.144 |
Mobile internet | mintn | 210 | 107,429 | 250,059 | 96 | 1.70 × 106 |
Mobile telephone | mtel | 210 | 205,216 | 364,185 | 3802 | 1.80 × 106 |
Income | inc | 210 | 1.02 × 106 | 1.67 × 106 | 72,861 | 9.10 × 106 |
Income per capita | incpc | 210 | 13,707 | 12,405 | 975 | 42,207 |
Testing | IPS | Pesaran-CD | CIPS | CADF | |||
---|---|---|---|---|---|---|---|
Level | First Diff. | Level | First Diff. | Level | First Diff. | ||
ln(hw) | −1.366 | −3.218 * | 35.249 * | −2.135 | −3.126 * | −1.738 | −3.126 * |
ln(hwpu) | −1.234 | −2.452 * | 1.698 *** | −1.142 | −2.519 ** | −0.990 | −2.519 * |
hwbc | −1.346 | −3.703 * | 35.887 * | −1.727 | −2.578 * | −1.879 | −2.578 * |
hwdc | −2.111 *** | −2.950 * | −0.757 | −1.364 | −2.683 * | −1.364 | −2.683 * |
chgw | −3.099 * | −5.823 * | 10.319 * | −2.168 *** | −3.818 * | −2.178 *** | −3.818 * |
ln(mintn) | −4.426 * | −9.080 * | 30.467 * | −5.135 * | −5.385 * | −5.135 * | −5.385 * |
ln(mtel) | −4.779 * | −3.241 * | 34.228 * | −1.842 | −3.108 * | −1.842 | −3.108 * |
ln(incpc) | −2.394 ** | −2.201 * | −27.565 * | −2.287 ** | −3.287 * | −2.287 ** | −3.287 * |
ln(inc) | −2.449 * | −2.135 ** | −28.252 * | −2.109 *** | −3.146 * | −2.109 *** | −3.146 * |
Variable | Skewness | Kurtosis | Shapiro–Wilk Test | Shapiro–Francia Test |
---|---|---|---|---|
ln(hw) | 0.828 | 3.408 | 5.224 * | 4.793 * |
ln(hwpu) | 0.264 | 2.806 | 5.497 * | 5.047 * |
hwbc | 0.870 | 2.650 | 5.909 * | 4.355 * |
hwdc | −0.294 | 2.300 | 4.606 * | 4.150 * |
chgw | −1.044 | 4.525 | 3.051 * | 3.234 * |
ln(mintn) | −1.062 | 2.719 | 7.952 * | 7.296 * |
ln(mtel) | 0.273 | 2.438 | 3.487 * | 3.030 * |
ln(incpc) | −0.112 | 1.408 | 6.656 * | 6.072 * |
ln(inc) | 0.705 | 2.532 | 5.563 * | 5.077 * |
ln(hwfood) | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
---|---|---|---|---|---|---|---|---|---|
chgw | 0.0006 | 0.001 * | 0.002 * | 0.002 * | 0.002 * | 0.002 * | 0.002 * | 0.0009 * | 0.002 * |
−1.57 | −54.98 | −13.45 | −12.46 | −10.03 | −8.91 | −9.51 | −6 | −89.03 | |
ln(mintn) | −0.003 * | −0.002 * | −0.0006 * | 0.0009 * | −0.0009 * | 0.0001 | 0.0002 | 0.001 * | 0.004 * |
(−8.80) | (−6.43) | (−2.35) | −4.7 | (−3.07) | −1.03 | −0.25 | −10.34 | −135.06 | |
ln(mtel) | 0.091 * | 0.073 * | 0.079 * | 0.070 * | 0.045 * | 0.087 * | 0.202 ** | 0.164 * | 0.196 * |
−5.13 | −14.63 | −22.8 | −8.56 | −3.53 | −4.53 | −2.13 | −6.78 | −67.17 | |
hwbc | 0.008 | 0.034 * | 0.040 * | 0.024 * | 0.191 * | 0.008 | −0.002 | 0.0002 | −0.005 * |
−0.39 | −2.59 | −5.86 | −6.45 | −3.73 | −1.02 | (−0.33) | −0.04 | (−5.13) | |
hwdc | −0.793 * | −1.032 * | −1.638 * | −1.755 * | −1.487 * | −2.193 * | −2.668 * | −3.085 * | −3.489 * |
(−5.35) | (−37.49) | (−25.17) | (−14.04) | (−5.74) | (−30.02) | (−26.45) | (−69.21) | (−287.11) | |
ln(hwpu) | 0.951 * | 0.666 * | 0.555 * | 0.404 * | 0.407 * | 0.203 * | 0.218 * | 0.032 | 0.100 * |
−31.13 | −124.8 | −22.48 | −19.76 | −7.22 | −7.05 | −4.95 | −1.05 | −36.96 | |
ln(incpc) | −0.141 | −0.613 * | −0.28 * | −0.286 * | 0.257 * | 0.200 *** | 0.162 | 1.094 * | 0.920 * |
(−0.80) | (−38.17) | (−4.56) | (−3.69) | −3.41 | −1.79 | −0.97 | −42.57 | −40.92 | |
Ln(inc) | 0.474 * | 0.763 * | 0.475 * | 0.513 * | −0.103 | 0.104 | 0.131 | −0.831 * | −0.587 * |
−2.44 | −49.04 | −7.43 | −5.94 | (−1.01) | −1.2 | −0.67 | (−26.95) | (−35.69) | |
Obs. | 196 | 196 | 196 | 196 | 196 | 196 | 196 | 196 | 196 |
0.10 | 0.20 | 0.30 | 0.40 | 0.50 | 0.60 | 0.70 | 0.80 | 0.90 | |
---|---|---|---|---|---|---|---|---|---|
Dependent variable: ln(ffufood) | |||||||||
chgw | 0.004 * (8.06) | 0.003 * (7.64) | 0.003 * (36.06) | 0.003 * (5.14) | 0.004 * (9.51) | 0.002 * (13.21) | 0.0008 * (10.36) | −0.0001 (−0.19) | 0.003 * (14.28) |
ln(mintn) | −0.005 * (−11.36) | −0.003 * (−4.21) | −0.003 * (−9.75) | −0.00001 (−0.02) | −0.002 * (−6.47) | −0.002 * (−8.47) | −0.0009 * (−4.14) | 0.001 (1.31) | 0.002 * (7.44) |
ln(mtel) | 0.140 * (5.47) | 0.132 * (11.45) | 0.025 * (4.40) | 0.006 (0.16) | 0.079 * (2.98) | 0.035 * (6.50) | 0.197 * (71.50) | 0.200 * (12.80) | 0.226 * (16.87) |
ffubc | 0.086 (1.32) | −0.152 (−1.26) | 0.238 * (11.34) | −0.120 ** (−2.38) | 0.352 * (8.87) | 0.062 * (3.99) | 0.198 * (40.79) | 0.050 (0.57) | 0.151 * (3.45) |
ffudc | −0.219 (−1.49) | 0.041 (0.31) | 0.262 * (3.51) | −0.565 * (−8.55) | −0.450 ** (−2.16) | −1.180 * (−22.03) | −2.493 * (−56.37) | −2.994 * (−6.03) | −3.967 * (−47.91) |
ln(ffupu) | 0.765 * (8.07) | 0.651 * (9.09) | 0.428 * (32.09) | 0.342 * (4.31) | 0.366 * (15.01) | 0.473 * (45.40) | 0.557 * (73.94) | 0.266 * (2.77) | 0.070 *** (1.75) |
ln(incpc) | −0.888 * (−3.45) | −0.523 * (−2.38) | −0.545 * (−9.66) | −0.290 ** (−2.02) | −0.325 * (−3.75) | −0.356 * (−7.52) | −0.015 (−0.27) | 0.545 *** (1.86) | 1.165 * (9.04) |
ln(inc) | 1.210 * (4.93) | 0.621 * (2.50) | 0.675 * (14.20) | 0.619 * (3.94) | 0.370 * (5.06) | 0.521 * (13.56) | 0.013 (0.26) | −0.155 (−0.62) | −0.961 * (−7.24) |
Dependent variable: ln(bfyfood) | |||||||||
chgw | 0.001 * (6.83) | 0.001 * (4.42) | 0.003 * (11.43) | 0.001 * (11.72) | 0.0004 (1.08) | 2.81 × 10−6 (0.01) | −0.0006 *** (−1.74) | 0.001 * (3.25) | 0.005 * (20.20) |
ln(mintn) | 0.002 * (3.86) | 0.002 * (4.19) | 0.002 * (12.27) | 0.0003 (0.64) | 0.002 * (10.08) | 0.0005 (0.39) | 0.003 * (10.28) | 0.002 * (2.86) | 0.007 * (23.28) |
ln(mtel) | −0.018 (−1.31) | −0.012 (−1.03) | 0.023 * (8.93) | 0.017 (0.76) | 0.136 * (22.15) | 0.106 * (8.86) | 0.175 * (11.31) | 0.044 (0.48) | −0.013 (−1.55) |
bfybc | 0.064 (0.181) | 0.095 ** (2.10) | 0.177 * (10.22) | 0.094 * (9.29) | 0.099 * (4.03) | 0.070 * (2.93) | 0.142 * (12.66) | 0.115 * (2.70) | −0.004 (−0.59) |
bfydc | −0.260 * (−32.54) | −2.418 * (−23.26) | −0.137 * (−12.41) | −0.194 * (−19.16) | −0.140 * (−19.92) | −0.113 * (−8.26) | −0.170 * (−13.66) | −0.041 * (−2.44) | −0.103 * (−14.18) |
ln(bfypu) | 0.190 * (4.59) | 0.187 * (5.29) | 0.262 * (11.70) | 0.403 * (16.51) | 0.310 * (16.21) | 0.220 * (10.40) | 0.436 * (10.01) | 0.640 * (7.95) | 0.186 * (10.05) |
ln(incpc) | 1.111 * (7.45) | 1.091 * (6.11) | 1.373 * (60.47) | 0.708 * (7.43) | 1.056 * (22.70) | 1.158 * (11.41) | 1.791 * (17.07) | 1.417 * (3.07) | 1.311 * (11.81) |
ln(inc) | −0.735 * (−4.45) | −0.747 * (−4.35) | −1.203 * (−49.20) | −0.664 * (−7.12) | −0.831 * (−18.16) | −0.854 * (−13.90) | −1.434 * (−13.62) | −1.133 * (−2.43) | −0.975 * (−9.58) |
Dependent variable: ln(fffood) | |||||||||
chgw | 4.84 × 10−5 (−1.28) | 0.0009 * (3.21) | 0.002 * (3.94) | 0.001 * (3.53) | 0.003 * (3.67) | 0.002 * (13.70) | 0.003 * (10.02) | 0.003 * (5.10) | 0.002 * (4.02) |
ln(mintn) | −0.001 * (−29.06) | −0.001 *** (−1.78) | −0.001 *** (−1.66) | 0.0006 (1.31) | −0.001 (−0.93) | 0.0001 (0.31) | 0.001 (1.45) | 0.005 * (7.65) | 0.007 * (6.13) |
ln(mtel) | 0.014 * (46.81) | −0.030 * (−4.81) | 0.001 (0.09) | 0.026 (1.32) | 0.031 * (2.39) | 0.076 * (9.52) | 0.047 * (3.27) | −0.014 *** (−1.86) | 0.0007 (0.03) |
ffbc | 0.002 ** (2.18) | 0.075 * (2.72) | 0.084 * (3.90) | 0.086 * (2.91) | 0.121 * (4.13) | 0.083 * (14.72) | −0.041 ** (−1.96) | 0.111 (1.61) | 0.095 * (3.41) |
ffdc | −0.545 * (−62.24) | −0.025 (−0.28) | 0.037 (0.74) | 0.075 *** (1.79) | −0.120 (−1.55) | 0.295 * (2.53) | 0.236 *** (1.73) | 0.193 (1.54) | 0.650 * (8.61) |
ln(ffpu) | 0.152 * (112.47) | 0.065 * (2.46) | 0.091 (1.45) | 0.151 * (3.70) | 0.003 (0.03) | 0.165 * (9.09) | −0.059 *** (−1.68) | −0.084 * (−2.97) | −0.091 ** (−2.12) |
ln(incpc) | 0.332 * (41.64) | 0.587 * (3.38) | 0.578 (1.20) | −0.327 (−0.91) | −0.675 (−1.50) | −0.624 * (−2.68) | −0.822 * (−3.41) | −0.476 (−0.70) | 1.092 * (7.23) |
ln(inc) | −0.081 * (−11.07) | −0.414 * (−2.52) | −0.461 (−0.95) | 0.363 (1.16) | 0.545 (0.95) | 0.430 (1.52) | 1.000 * (4.05) | 0.605 (0.96) | −1.084 * (−9.15) |
Dependent variable: ln(nhfood) | |||||||||
chgw | 0.0006 * (17.91) | 0.003 * (25.64) | 0.0003 *** (1.71) | 0.0006 * (4.80) | 0.0004 * (2.56) | −0.0005 * (−27.43) | 8.09 × 10−5 (1.19) | −0.001 * (−7.55) | 6.85 × 10−5 (−0.15) |
ln(mintn) | −0.0003 * (−3.32) | −0.0005 ** (−2.30) | −0.0006 * (−2.47) | 0.0004 * (9.30) | 0.001 * (5.15) | −0.0002 * (−10.53) | −0.0002 * (−3.22) | 0.0007 ** (2.11) | 0.001 *** (1.70) |
ln(mtel) | −0.189 * (−115.01) | −0.112 * (−40.56) | −0.002 (−0.21) | 0.001 (0.37) | 0.025 (0.49) | 0.042 * (89.13) | 0.056 * (16.74) | 0.095 * (10.61) | 0.181 * (19.96) |
nhbc | −0.155 * (−186.96) | 0.006 (1.03) | −0.030 * (−2.44) | −0.035 * (−7.31) | 0.030 * (3.87) | 0.011 * (14.92) | 0.014 * (7.25) | −0.001 (−0.21) | −0.019 (−1.14) |
nhdc | 1.644 * (78.99) | 0.751 * (22.92) | 0.042 (0.48) | −0.136 * (−3.47) | −0.432 * (−5.95) | −1.017 * (−199.75) | −0.634 * (−50.92) | −0.394 * (−3.13) | −1.532 * (−23.47) |
ln(nhpu) | 0.527 * (76.70) | 0.537 * (40.34) | 0.672 * (14.61) | 0.584 * (12.86) | 0.452 * (4.62) | 0.721 * (572.44) | 0.640 * (64.84) | 0.938 * (21.67) | 1.069 * (58.14) |
ln(incpc) | 0.788 * (76.89) | 0.289 * (7.23) | −0.379 (−4.98) | 0.18 (1.11) | 0.728 * (4.10) | 0.150 * (60.54) | 0.323 * (19.24) | 0.047 (0.27) | −0.127 *** (−1.65) |
ln(inc) | −0.467 * (−40.49) | −0.163 * (−4.79) | 0.501 * (5.53) | −0.163 (−1.00) | −0.649 * (−4.02) | −0.118 * (−48.82) | −3.103 * (−18.59) | −0.072 (−0.42) | −0.030 (−0.57) |
Dependent variable: ln(orgfood) | |||||||||
chgw | −0.0001 *** (−1.74) | 5.27 × 10−5 (−0.26) | −0.001 * (−5.99) | 0.0003 (1.48) | 0.0005 (0.70) | 0.001 * (62.88) | −0.003 * (−6.90) | −0.006 * (−78.48) | −0.010 * (−21.75) |
ln(mintn) | 0.0001 (0.99) | 0.0001 (0.11) | 0.004 * (11.28) | 0.004 * (4.43) | 0.004 * (7.83) | 0.007 * (124.61) | 0.001 ** (2.26) | 0.012 * (112.46) | 0.004 * (10.39) |
ln(mtel) | −0.004 (−1.34) | 0.028 (0.87) | 0.094 * (7.28) | −0.074 * (−5.74) | −0.148 * (−6.05) | 0.133 * (70.09) | 0.141 * (9.43) | 0.353 * (247.66) | 0.660 * (18.06) |
orgbc | 0.019 * (5.85) | 0.018 ** (2.12) | −0.040 * (−11.23) | −0.034 (−0.63) | −0.014 (−0.26) | −0.090 * (−102.76) | −0.182 * (−12.28) | 0.411 * (161.72) | 0.222 * (9.25) |
orgdc | −0.023 * (−18.76) | −0.020 * (−3.19) | −0.049 * (−7.83) | 0.001 (0.13) | 0.073 (1.16) | 0.136 * (96.49) | 0.198 * (12.16) | 0.322 * (81.46) | 0.433 * (31.68) |
ln(orgpu) | 0.190 * (2196) | 0.191 * (288.14) | 0.188 * (778.00) | 0.187 * (461.43) | 0.179 * (40.53) | 0.170 * (1569) | 0.170 * (175.66) | 0.151 * (602.12) | 0.117 * (68.69) |
ln(incpc) | −0.010 (−0.22) | 0.655 * (2.54) | 0.264 * (3.34) | 0.173 (0.75) | −0.313 (−0.99) | 1.152 * (78.92) | 1.371 * (9.51) | 2.950 * (60.63) | 11.709 * (12.20) |
ln(inc) | 0.005 (0.11) | −0.618 * (−2.93) | 0.004 (0.05) | 0.208 (0.73) | 0.742 (1.60) | −0.787 * (−54.21) | −0.714 * (−5.53) | −2.408 * (−63.27) | −9.863 * (−13.06) |
0.10 | 0.20 | 0.30 | 0.40 | 0.50 | 0.60 | 0.70 | 0.80 | 0.90 | |
---|---|---|---|---|---|---|---|---|---|
Dependent variable: ln(hwpc) | |||||||||
chgw | 0.143 * (13.76) | 0.079 *** (1.92) | 0.107 * (16.24) | 0.095 * (20.42) | 0.135 * (18.21) | 0.113 * (76.88) | 0.024 * (4.34) | 0.094 (1.47) | −0.603 * (−4.21) |
ln(mintn) | −0.056 ** (−2.31) | −0.117 ** (−2.44) | −0.052 ** (−2.44) | −0.075 * (−33.10) | 0.141 * (5.55) | 0.209 * (86.10) | 0.254 * (35.00) | 0.059 (0.59) | 1.258 * (2.88) |
ln(mtel) | 5.172 * (3.25) | 3.787 * (4.65) | 2.024 ** (2.32) | −1.241 * (−10.74) | −0.969 * (−5.18) | −0.186 (−1.49) | 5.839 * (13.20) | 6.721 * (7.72) | 26.157 * (10.01) |
hwbc | 8.503 * (5.84) | 3.886 * (3.04) | 2.764 * (5.35) | 3.424 * (17.99) | 4.524 * (3.22) | 3.727 * (24.61) | 12.230 * (16.99) | 16.616 * (6.90) | 12.872 ** (2.43) |
hwdc | −111.717 * (−13.02) | −49.601 * (−7.34) | −51.811 * (−29.45) | −58.740 * (−36.05) | −72.439 * (−9.33) | −152.883 * (−243.20) | −293.721 * (−155.81) | −358.725 * (−24.49) | −239.033 * (−3.95) |
ln(hwpu) | 101.573 * (15.50) | 30.969 * (7.72) | 29.204 * (15.49) | 21.642 * (53.05) | 27.818 * (25.39) | 39.717 * (272.40) | 72.307 * (49.39) | 72.955 * (13.49) | 134.461 * (6.10) |
ln(incpc) | −3.923 (−0.52) | 89.436 * (3.00) | 70.634 * (8.62) | 45.645 * (24.84) | 94.255 * (20.87) | 59.509 * (26.21) | 55.086 * (45.73) | 36.875 *** (1.94) | 31.108 (0.56) |
Ln(inc) | 32.714 * (3.33) | −79.346 * (−2.58) | −71.167 * (−7.54) | −41.693 * (−16.66) | −87.706 * (−20.23) | −55.368 * (−25.96) | −57.350 * (−58.00) | −41.772 ** (−2.11) | −32.120 (−0.67) |
Dependent variable: ln(hwpc-owp) | |||||||||
chgw | 0.021 (0.38) | 0.385 * (10.64) | 0.684 * (14.28) | 0.578 * (41.83) | 0.846 * (14.14) | 1.191 * (5.92) | 0.625 * (16.36) | −0.469 * (−7.03) | −3.128 * (−12.09) |
ln(mintn) | −0.564 * (−10.18) | −0.874 * (−5.58) | −0.804 * (−20.57) | −0.301 * (−11.04) | −0.229 * (−2.59) | 0.498 * (5.33) | 1.765 * (92.59) | 0.998 * (6.60) | −1.542 * (−7.27) |
ln(mtel) | 27.906 * (26.21) | 12.841 (1.39) | 0.915 (0.26) | 6.455 * (9.68) | −2.268 (−0.83) | 2.617 (1.22) | 43.730 * (63.74) | 61.866 * (32.37) | 92.981 * (7.39) |
hwbc | 32.448 * (31.05) | 35.990 * (4.04) | 12.886 * (3.73) | 12.521 * (36.11) | −0.026 (−0.01) | 36.629 * (2.89) | 64.132 * (61.70) | 105.961 * (143.37) | 121.047 * (11.91) |
hwdc | −814.840 * (−77.89) | −401.672 * (−13.61) | −253.674 * (−27.96) | −318.781 * (−45.97) | −253.467 * (−8.76) | −595.582 * (−20.02) | −2109.25 * (−175.06) | −2831.89 * (−190.62) | −4114.88 * (−57.94) |
ln(hwpu) | 471.323 * (58.70) | 263.020 * (18.41) | 148.625 * (87.66) | 116.055 * (56.23) | 130.078 * (14.49) | 170.126 * (10.35) | 473.401 * (259.22) | 561.470 * (175.84) | 570.088 * (14.54) |
ln(incpc) | 40.871 * (2.95) | 245.847 * (4.79) | 146.488 * (3.45) | 141.212 * (16.83) | 595.817 * (6.89) | 391.820 * (14.72) | −97.605 * (−9.85) | 488.771 * (47.36) | 878.762 * (6.61) |
Ln(inc) | 36.216 * (2.82) | −177.512 * (−2.87) | −109.080 * (−2.85) | −120.887 * (−12.13) | −621.792 * (−6.74) | −318.265 * (−7.23) | 145.639 * (14.40) | −452.472 * (−43.35) | −712.144 * (−5.89) |
Dependent variable: ln(hwpc-obp) | |||||||||
chgw | 0.279 * (8.43) | 2.511 * (3.09) | 2.652 * (17.72) | 2.519 * (3.98) | 3.638 * (18.58) | 1.567 * (8.80) | 2.121 * (5.14) | −5.095 * (−4.62) | −9.205 * (−8.25) |
ln(mintn) | −14.128 * (−68.60) | −6.709 * (−7.00) | −4.419 * (−8.54) | −4.020 * (−6.60) | 1.905 * (5.03) | −2.849 * (−2.91) | 3.580 * (2.61) | 9.055 * (19.20) | 1.943 (0.61) |
ln(mtel) | −15.492 * (−8.93) | −72.844 *** (−1.77) | 96.273 * (6.33) | 67.337 ** (2.32) | 155.140 * (19.59) | 120.211 * (9.02) | 180.679 * (7.74) | 530.461 * (8.55) | 354.010 * (4.03) |
hwbc | 5.577 * (2.61) | 249.141 * (5.28) | 103.034 ** (2.13) | 218.808 ** (1.89) | 85.141 * (25.59) | 117.600 * (6.28) | 114.348 * (4.63) | 279.130 * (3.16) | 375.730 * (5.04) |
hwdc | −5645.792 * (−296.39) | −1626.795 * (−6.07) | −2452.611 * (−19.11) | −1732.012 * (−10.09) | −1876.842 * (−18.01) | −2354.531 * (−6.10) | −3946.42 * (−60.66) | −15371.1 * (−71.94) | −20661.6 * (−33.30) |
ln(hwpu) | 3132.294 * (243.01) | 2108.473 * (18.07) | 1668.942 * (36.47) | 1562.774 * (11.08) | 1133.001 * (33.30) | 1351.051 * (9.67) | 785.469 * (8.76) | 2391.274 * (37.51) | 1322.978 * (3.40) |
ln(incpc) | −1326.453 * (−127.49) | −3413.275 * (−10.18) | −2391.463 * (−15.52) | −986.022 * (−2.71) | −399.072 * (−3.31) | −605.307 *** (−1.85) | 1606.63 * (5.77) | 810.88 *** (1.72) | 6997.146 * (5.64) |
Ln(inc) | 2654.533 * (196.65) | 3855.438 * (11.92) | 2594.303 * (16.51) | 1094.606 * (2.65) | 399.609 * (3.40) | 768.680 ** (2.01) | −1524.89 * (−5.70) | −392.153 (−0.90) | −5742.37 * (−5.72) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uttama, N.P. Open Innovation and Business Model of Health Food Industry in Asia. J. Open Innov. Technol. Mark. Complex. 2021, 7, 174. https://doi.org/10.3390/joitmc7030174
Uttama NP. Open Innovation and Business Model of Health Food Industry in Asia. Journal of Open Innovation: Technology, Market, and Complexity. 2021; 7(3):174. https://doi.org/10.3390/joitmc7030174
Chicago/Turabian StyleUttama, Nathapornpan Piyaareekul. 2021. "Open Innovation and Business Model of Health Food Industry in Asia" Journal of Open Innovation: Technology, Market, and Complexity 7, no. 3: 174. https://doi.org/10.3390/joitmc7030174
APA StyleUttama, N. P. (2021). Open Innovation and Business Model of Health Food Industry in Asia. Journal of Open Innovation: Technology, Market, and Complexity, 7(3), 174. https://doi.org/10.3390/joitmc7030174