Technological Innovation, the Kyoto Protocol, and Open Innovation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Method
2.2. Data
3. Results
3.1. Technological Innovation and the Kyoto Protocol
3.2. Impact of Innovation on Environmental Performance
4. Discussion
4.1. Technological Innovation in the Kyoto Protocol
4.2. Open Innovaiton and International Regimes
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations Framework Convention on Climate Change (UNFCCC). Available online: http://unfccc.int (accessed on 17 March 2021).
- Grubb, M. Kyoto and the future of international climate change responses: From here to where. Int. Rev. Environ. Strateg. 2004, 5, 15–38. [Google Scholar]
- Kim, Y.; Tanaka, K.; Matsuoka, S. Environmental and economic effectiveness of the Kyoto Protocol. PLoS ONE 2020, 15, e0236299. [Google Scholar] [CrossRef]
- Jha, R.; Whalley, J. The environmental regime in developing countries. In Behavioral and Distributional Effects of Environmental Policy; Carraro, C., MetCalf, G.E., Eds.; University of Chicago Press: Chicago, IL, USA, 2001; pp. 217–250. [Google Scholar]
- Kim, Y.; Tanaka, K. Green Innovation for Sustainable Development: A Quantitative Analysis of the Impact of the Kyoto Protocol. In National Research & Innovation Conference for the Graduate Students in Social Sciences; Faculty of Economics and Management, Universiti Putra Malaysia: Negeri Sembilan, Malaysia, 2014; pp. 624–640. [Google Scholar]
- Böhringer, C.; Rutherford, T.F.; Schöb, R. World economic impacts of the Kyoto Protocol. In Internationalization of the Economy and Environmental Policy Options; Welfens, P.J., Ed.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 161–189. [Google Scholar]
- Kanie, N. Governance with multilateral environmental agreements: A healthy or ill-equipped fragmentation. In Global Environmental Governance; Swart, L., Perry, E., Eds.; Center for UN Reform Education: New York, NY, USA, 2007; pp. 67–86. [Google Scholar]
- Nordhaus, W.D.; Boyer, J. Roll the DICE Again: The Economics of Global Warming; Yale University: New Haven, CT, USA, 1999. [Google Scholar]
- Sprinz, D.; Vaahtoranta, T. The interest-based explanation of international environmental policy. Int. Organ. 1994, 48, 77–105. [Google Scholar] [CrossRef]
- Mearsheimer, J.J. The false promise of international institutions. Int. Secur. 1994, 19, 5–49. [Google Scholar] [CrossRef]
- Lanoie, P.; Laurent-Lucchetti, J.; Johnstone, N.; Ambec, S. Environmental policy, innovation and performance: New insights on the Porter hypothesis. J. Econ. Manag. Strategy 2011, 20, 803–842. [Google Scholar] [CrossRef] [Green Version]
- Porter, M.E.; Van der Linde, C. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Cohen, M.A.; Tubb, A. The impact of environmental regulation on firm and country competitiveness: A meta-analysis of the Porter Hypothesis. J. Assoc. Environ. Resour. Econ. 2018, 5, 371–399. [Google Scholar] [CrossRef] [Green Version]
- Popp, D. The Role of Technological Change in Green Growth; NBER working paper series Working Paper 18506; National Bureau of Economic Research: Cambridge, MA, USA, 2012. [Google Scholar]
- Kerr, S.; Newell, R.G. Policy-induced technology adoption: Evidence from the U.S. lead phasedown. J. Ind. Econ. 2003, 51, 317–343. [Google Scholar] [CrossRef]
- Beltrán-Esteve, M.; Picazo-Tadeo, A.J. Assessing environmental performance in the European Union: Eco-innovation versus catching-up. Energy Policy 2017, 104, 240–252. [Google Scholar] [CrossRef]
- Pickman, H.A. The effect of environmental regulation on environmental innovation. Bus. Strategy Environ. 1998, 7, 223–233. [Google Scholar] [CrossRef]
- Gans, J.S. Innovation and climate change policy. Am. Econ. J. 2012, 4, 125–145. [Google Scholar] [CrossRef] [Green Version]
- Fischer, C.; Newell, R.G. Environmental and technology policies for climate mitigation. J. Environ. Econ. Manag. 2008, 55, 142–162. [Google Scholar] [CrossRef] [Green Version]
- Horbach, J. Empirical determinants of eco-innovation in European countries using the community innovation survey. Environ. Innov. Soc. Transit. 2016, 19, 1–14. [Google Scholar] [CrossRef]
- Ekins, P. Eco-innovation for environmental sustainability: Concepts, progress and policies. Int. Econ. Econ. Policy 2010, 7, 267–290. [Google Scholar] [CrossRef]
- Kemp, R.; Pontoglio, S. The innovation effects of environmental policy instruments—A typical case of the blind men and the elephant? Ecol. Econ. 2011, 72, 28–36. [Google Scholar] [CrossRef]
- Barrett, S. Climate treaties and “breakthrough” technologies. Am. Econ. Rev. 2006, 96, 22–25. [Google Scholar] [CrossRef]
- Benchekroun, H.; Chaudhuri, A.R. Cleaner technologies and the stability of international environmental agreements. J. Public Econ. Theory 2015, 17, 887–915. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, A.; Rubio, S.J. Sharing R&D investments in cleaner technologies to mitigate climate change. Resour. Energy Econ. 2014, 38, 168–180. [Google Scholar]
- Goeschl, T.; Perino, G. The climate policy hold-up: Green technologies, intellectual property rights, and the abatement incentives of international agreements. Scand. J. Econ. 2017, 119, 709–732. [Google Scholar] [CrossRef] [Green Version]
- Helm, C.; Schmidt, R.C. Climate cooperation with technology investments and border carbon adjustment. Eur. Econ. Rev. 2015, 75, 112–130. [Google Scholar] [CrossRef] [Green Version]
- Hoel, M.; Zeeuw, A. Can a focus on breakthrough technologies improve the performance of international environmental agreements? Environ. Resour. Econ. 2010, 27, 395–406. [Google Scholar] [CrossRef] [Green Version]
- Michaelowa, A. CDM Host country institution building. Mitig. Adapt. Strateg. Glob. Chang. 2003, 8, 201–220. [Google Scholar] [CrossRef] [Green Version]
- Clean Development Mechanism (CDM). Available online: https://cdm.unfccc.int (accessed on 17 March 2021).
- Chesbrough, H.W. Open Innovation: The New Imperative for Creating and Profiting from Technology; Harvard Business Press: Boston, MA, USA, 2003. [Google Scholar]
- Chesbrough, H.W.; Appleyard, M.M. Open innovation and strategy. Calif. Manag. Rev. 2007, 50, 57–76. [Google Scholar] [CrossRef] [Green Version]
- Yun, J.J.; Won, D.; Park, K. Dynamics from open innovation to evolutionary change. J. Open Innov. Technol. Mark. Complex. 2016, 2, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Grunewald, N.; Martinez-Zarzoso, I. Did the Kyoto Protocol fail? An evaluation of the effect of the Kyoto Protocol on CO2 emissions. Environ. Dev. Econ. 2016, 21, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Kuriyama, A.; Abe, N. Ex-post assessment of the Kyoto Protocol-quantification of the CO2 mitigation impact in both Annex B and non-Annex B countries. Appl. Energy 2018, 202, 286–295. [Google Scholar] [CrossRef]
- Organization for Economic Co-Operations and Development (OECD) OECD.Stat. Available online: http://stats.oecd.org (accessed on 17 March 2021).
- Dutta, S. The global innovation index 2012. In Stronger Innovation Linkages for Global; INSEAD: Fontainebleau, France, 2012. [Google Scholar]
- Fankhauser, S.; Bowen, A.; Calel, R.; Dechezleprêtre, A.; Grover, D.; Rydge, J.; Sato, M. Who will win the green race? In search of environmental competitiveness and innovation. Glob. Environ. Chang. 2013, 23, 902–913. [Google Scholar] [CrossRef] [Green Version]
- Grupp, H. The measurement of technical performance of innovations by technometrics and its impact on established technology indicators. Res. Policy 1994, 23, 175–193. [Google Scholar] [CrossRef]
- Waltz, R.; Eichhammer, W. Benchmarking green innovation. Miner. Econ. 2012, 24, 79–101. [Google Scholar] [CrossRef]
- Mitchell, R.B. A quantitative approach to evaluating international environmental regimes. Glob. Environ. Politics 2002, 2, 58–83. [Google Scholar] [CrossRef]
- Kumazawa, R.; Callaghan, M.S. The effect of the Kyoto Protocol on carbon dioxide emissions. J. Econ. Financ. 2012, 36, 201–210. [Google Scholar] [CrossRef]
- Huang, W.M.; Lee, G.W.; Wu, C.C. GHG Emissions, GDP growth and the Kyoto Protocol: A revisit of environmental Kuznets curve hypothesis. Energy Policy 2008, 36, 239–247. [Google Scholar] [CrossRef]
- Bauer, N.; Rose, S.K.; Fujimori, S.; Van Vuuren, D.P.; Weyant, J.; Wise, M.; Cui, Y.; Daioglou, V.; Gidden, M.J.; Kato, E.; et al. Global energy sector emission reductions and bioenergy use: Overview of the bioenergy demand phase of the EMF-33 model comparison. Clim. Chang. 2020, 163, 1553–1568. [Google Scholar] [CrossRef]
- Ebinger, J.; Vergara, W. Climate Impacts on Energy Systems: Key Issues for Energy Sector Adaptation; The World Bank: Washington, DC, USA, 2011. [Google Scholar]
- El-Fadel, M.; Chedid, R.; Zeinati, M.; Hmaidan, W. Mitigating energy-related GHG emissions through renewable energy. Renew. Energy 2003, 28, 1257–1276. [Google Scholar] [CrossRef]
- United Nations Treaty Collection (UNTC). Available online: https://treaties.un.org (accessed on 17 March 2021).
- OECD. OECD Patent Statistics Manual; OECD Publishing: Paris, France, 2009. [Google Scholar]
- World Development Indicators (WDI). Available online: https://www.worldbank.org/en/home (accessed on 17 March 2021).
- Banister, D.; Anderton, K.; Bonilla, D.; Givoni, M.; Schwanen, T. Transportation and the environment. Annu Rev. Environ. Resour. 2011, 36, 247–270. [Google Scholar] [CrossRef] [Green Version]
- Nelson, R.R.; Phelps, E.S. Investment in humans, technological diffusion, and economic growth. Am. Econ. Rev. 1966, 56, 69–75. [Google Scholar]
- Ken, Y.; Tsai, T.Y.; Ou, Y.K. Study of the time lag effect of patent impact on profitability of US pharmaceutical industry from innovation to profit. In Proceedings of the PICMET’08—2008 Portland International Conference on Management of Engineering & Technology, Cape Town, South Africa, 27–31 July 2008; pp. 2588–2596. [Google Scholar]
- Gerken, J.M.; Moehrle, M.G.; Walter, L. One year ahead! Investigating the time lag between patent publication and market launch: Insights from a longitudinal study in the automotive industry. R&D Manag. 2015, 45, 287–303. [Google Scholar]
- Bointner, R. Innovation in the energy sector: Lessons learnt from R&D expenditures and patents in selected IEA countries. Energy Policy 2014, 73, 733–747. [Google Scholar]
- Bowen, A.; Fankhauser, S. The green growth narrative: Paradigm shift or just spin? Glob. Environ. Chang. 2011, 21, 1157–1159. [Google Scholar] [CrossRef]
- Fankhauser, S.; Sehlleier, F.; Stern, N. Climate change, innovation and jobs. Clim. Policy 2008, 8, 421–429. [Google Scholar] [CrossRef]
- Jacobs, M. Green growth. In Handbook of Global Climate and Environmental Policy; Falkner, R., Ed.; John Wiley & Sons Inc.: West Sussex, UK, 2013; pp. 197–214. [Google Scholar]
- Bohringer, C. The Kyoto Protocol: A review and perspectives. Oxf. Rev. Econ. Pol. 2003, 19, 451–466. [Google Scholar] [CrossRef]
- Kim, Y.; Tanaka, K.; Matsuoka, S. Institutional mechanisms and the consequences of international environmental agreements. Glob. Environ. Polit. 2017, 17, 77–98. [Google Scholar] [CrossRef]
- Kennedy, S.; Whiteman, G.; van den Ende, J. Radical innovation for sustainability: The power of strategy and open innovation. Long Range Plann. 2017, 50, 712–725. [Google Scholar] [CrossRef] [Green Version]
- Leitão, J.; Pereira, D.; De Brito, S. Inbound and outbound practices of open innovation and eco-Innovation: Contrasting bioeconomy and non-bioeconomy Firms. J. Open Innov. Technol. Mark. Complex. 2020, 6, 145. [Google Scholar] [CrossRef]
- Chesbrough, H. Open Business Models: How to Thrive in the New Innovation Landscape; Harvard Business Press: Boston, MA, USA, 2006. [Google Scholar]
- Lee, W.J.; Mwebaza, R. The role of the climate technology centre and network as a climate technology and innovation matchmaker for developing countries. Sustainability 2020, 12, 7956. [Google Scholar] [CrossRef]
- Picard, F. Open innovation and joint patent applications: The case of greenhouse gas capture and storage technologies. J. Innov. Econ. Manag. 2012, 2, 107–122. [Google Scholar] [CrossRef]
- Lopes, C.M.; Scavarda, A.; Hofmeister, L.F.; Thomé, A.M.T.; Vaccaro, G.L.R. An analysis of the interplay between organizational sustainability, knowledge management, and open innovation. J. Clean. Prod. 2017, 142, 476–488. [Google Scholar] [CrossRef]
- Rauter, R.; Globocnik, D.; Perl-Vorbach, E.; Baumgartner, R.J. Open innovation and its effects on economic and sustainability innovation performance. J. Innov. Knowl. 2019, 4, 226–233. [Google Scholar] [CrossRef]
- Roh, T.; Lee, K.; Yang, J.Y. How do intellectual property rights and government support drive a firm’s green innovation? The mediating role of open innovation. J. Clean. Prod. 2021, 317, 128422. [Google Scholar] [CrossRef]
Variables | Obs. | Mean | SD | Min | Max | |
---|---|---|---|---|---|---|
RAT | Ratification of the Kyoto Protocol (dummy) | 1404 | 0.506 | 0.500 | 0 | 1 |
GHG | Total greenhouse gas emissions (kt of CO2 equivalent) per population | 1208 | 602,998.2 | 1,398,985 | 573.963 | 1.25 × 107 |
GDPP | GDP per capita; GDP divided by the midyear population (constant 2010 USD) | 1383 | 25,583.2 | 21,010.79 | 575.502 | 111,968.4 |
INNOV_TOTALENV | Selected climate change mitigation-related technologies (number) | 1360 | 59.507 | 223.871 | 0 | 2721.085 |
INNOV_BLDG | Mitigation technologies related to buildings | 1324 | 0.668 | 2.626 | 0 | 47.059 |
INNOV_ENERGY | Mitigation technologies related to energy generation, transmission, or distribution | 1326 | 2.349 | 5.262 | 0 | 90.212 |
INNOV_CAP | Capture, storage, sequestration, or disposal of greenhouse gases | 1318 | 0.164 | 1.204 | 0 | 33.333 |
INNOV_TRANS | Mitigation technologies related to transportation | 1328 | 1.342 | 4.438 | 0 | 100 |
INNOV_PROD | Mitigation technologies in the production or processing of goods | 1327 | 2.351 | 5.954 | 0 | 75.002 |
(RAT INNOV) | Synergy effect | 961 | 1.089 | 1.174 | −2.344 | 4.893 |
CAPITAL | Gross fixed capital formation (constant 2010 USD) | 1333 | 1.92 × 1011 | 4.27 × 1011 | 1.52 × 108 | 3.48 × 1012 |
LABOR | Labor force participation of the population ages 15–64 (% of total) | 1404 | 69.292 | 7.12 | 48.49 | 88.37 |
HUMAN | Education expenditure (current USD) | 1364 | 3.27 × 1010 | 8.31 × 1010 | 1.83 × 107 | 8.22 × 1011 |
EUSE | Energy use (constant 2017 PPP) | 1343 | 127.275 | 65.996 | 39.62 | 538.66 |
ELECPROD | Electricity production from oil, gas and coal sources (% of total) | 1378 | 57.264 | 29.921 | 0.012 | 100 |
RENEW | Renewable energy consumption (% of total) | 1404 | 16.994 | 15.715 | 0 | 77.345 |
Model | General Impact | Synergetic Impact | ||
---|---|---|---|---|
Total | Specific | No Time Lag | Time Lag | |
RAT | −0.048 *** (0.013) | −0.039 ** (0.017) | −0.026 (0.021) | −0.007 (0.022) |
INNOV_TOTALENV | 0.001 (0.005) | - | 0.006 (0.007) | 0.004 (0.009) |
INNOV_BLDG | - | −0.020 *** (0.008) | - | - |
INNOV_ENERGY | - | 0.021 (0.013) | - | - |
INNOV_CAP | - | 0.004 (0.007) | - | - |
INNOV_TRANS | - | 0.022 ** (0.009) | - | - |
INNOV_PROD | - | −0.028 * (0.016) | - | - |
(RAT INNOV) | - | - | −0.013 (0.009) | −0.006 (0.012) |
L1. | - | - | - | 0.001 (0.008) |
L2. | - | - | −0.007 (0.007) | |
L3. | −0.015 ** (0.006) | |||
0.574 *** (0.066) | 0.114 (0.152) | 0.582 *** (0.066) | 0.694 *** (0.083) | |
EUSE | 0.558 *** (0.071) | 0.443 *** (0.136) | 0.565 *** (0.071) | 0.657 *** (0.079) |
ELECPROD | 0.048 *** (0.016) | −0.005 (0.025) | 0.047 *** (0.016) | −0.017 (0.015) |
RENEW | −0.096 *** (0.0173) | −0.068 *** (0.021) | −0.095 *** (0.017) | −0.084 *** (0.015) |
Constants | −12.854 *** (0.955) | −7.497 *** (2.145) | −12.967 *** (0.958) | −14.391 *** (1.176) |
R2 | 0.698 | 0.477 | 0.698 | 0.575 |
Number of samples | 790 | 236 | 790 | 544 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y. Technological Innovation, the Kyoto Protocol, and Open Innovation. J. Open Innov. Technol. Mark. Complex. 2021, 7, 198. https://doi.org/10.3390/joitmc7030198
Kim Y. Technological Innovation, the Kyoto Protocol, and Open Innovation. Journal of Open Innovation: Technology, Market, and Complexity. 2021; 7(3):198. https://doi.org/10.3390/joitmc7030198
Chicago/Turabian StyleKim, Yoomi. 2021. "Technological Innovation, the Kyoto Protocol, and Open Innovation" Journal of Open Innovation: Technology, Market, and Complexity 7, no. 3: 198. https://doi.org/10.3390/joitmc7030198
APA StyleKim, Y. (2021). Technological Innovation, the Kyoto Protocol, and Open Innovation. Journal of Open Innovation: Technology, Market, and Complexity, 7(3), 198. https://doi.org/10.3390/joitmc7030198